SUMMARY:In the past decade, dynamic contrast-enhanced MR imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced MR imaging allows noninvasive assessment of permeability and blood flow, both important features of tumor hypoxia, which is a marker for treatment resistance for head and neck cancer. Dynamic contrast-enhanced MR imaging has the potential to identify early locoregional recurrence, differentiate metastatic lymph nodes from normal nodes, and predict tumor response to treatment and treatment monitoring in patients with head and neck cancer. Quantitative analysis is in its early stage and standardization and refinement of technique are essential. In this article, we review the techniques of dynamic contrast-enhanced MR imaging data acquisition, analytic methods, current limitations, and clinical applications in head and neck cancer.
ABBREVIATIONS:AIF ϭ arterial input function; DCE-MR imaging ϭ dynamic contrast-enhanced MR imaging; EES ϭ extracellular extravascular space; GCA ϭ
Discovery of genetic abnormalities associated with neurodegeneration with brain iron accumulation (NBIA) has led to use of a genetic-based NBIA classification schema. Most NBIA subtypes demonstrate characteristic imaging abnormalities. While clinical diagnosis of NBIA is difficult, analysis of both clinical findings and characteristic imaging abnormalities allows accurate diagnosis of most of the NBIA subtypes. This article reviews recent updates in the genetic, clinical, and imaging findings of NBIA subtypes and provides a practical step-by-step clinicoradiological algorithm toward clinical diagnosis of different NBIA subtypes.
The past 2 decades have seen a rapid growth in use of stereotactic body radiation therapy (SBRT) for the management of non-small cell lung cancer (NSCLC). Not only is SBRT the reference standard for treatment of early-stage node-negative NSCLC in medically inoperable patients, it is also currently challenging the role of surgery for early-stage operable disease. SBRT is also used to treat recurrent disease and has a role in the management of multiple synchronous lung cancers. Imaging changes after SBRT differ from the changes after conventional radiation therapy in many ways, the knowledge of which is pertinent for accurate image interpretation. Posttreatment response assessment and detection of recurrent disease are heavily reliant on radiologic assessment, and often the decision to treat recurrent disease is based on the imaging findings themselves. This article provides a comprehensive review of the concepts of SBRT and the current indications for its use in the treatment of early-stage NSCLC, as well as a discussion of the CT findings seen after SBRT compared with the changes after conventional radiation therapy. Radiologic findings that are suggestive of recurrent disease and the imaging pitfalls are also highlighted. Finally, the rare complications after SBRT are described. SBRT is a major component of the changing treatment paradigms for early- and late-stage NSCLC. The imaging findings after SBRT often determine the next steps in a patient's clinical management. Therefore, radiologists must be familiar with the uses of this therapy and its radiologic appearance to be able to effectively contribute to the care of patients with NSCLC. RSNA, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.