We present a low-cost, disposable microbial fuel cell fabricated on a paper based platform, having a start-up time of 10 s. The platform deploys ordinary pencil strokes for graphite electrode deposition. The device uses a membrane-less design in a one-time injection (OTI) mode or a continuous capillary driven flow mode (CPF), where oxygen from the atmosphere is used up at the cathode for water formation, leading to the generation of bioelectricity. The performance of the fuel cell is evaluated using two bacterial strains, namely, Pseudomonas aeruginosa IIT BT SS1 and Shewanella putrefaciens. This flexible device is shown to retain bacteria for a period of at least one hour, resulting in the generation of almost 0.4 V using P. aeruginosa and a maximum current of 18 μA using S. putrefaciens without the use of any additional catalysts.
CuO thin films were deposited onto glass substrates using Chemical bath deposition technique by varying the pH of the solution. Structural, optical and electrical properties of the synthesized films were studied as a function of the solution pH. X-ray diffractometry, scanning electron microscopy, UV-Vis spectroscopy and Hall effect measurements were used to explore the structure, morphology, optical and electrical properties of the films, respectively. All the films have exhibited orthorhombic structure with preferential orientation along the (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters such as crystallite size, RMS microstrain, dislocation density and stacking fault probability. Morphological studies have revealed that the uniformity of the film surface, and the average particle size was found to increase with solution pH. Optical parameters such as band gap, refractive index, extinction coefficient, real and imaginary dielectric constants and optical conductivity have been estimated from optical absorption measurements. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 7.43 9 10 13 cm -3 and 11.84 cm 2 V -1 s -1 respectively for CuO films prepared at solution pH 11.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.