Background-The most important determinant of longevity in pulmonary arterial hypertension is right ventricular (RV) function, but in contrast to experimental work elucidating the pathobiology of left ventricular failure, there is a paucity of data on the cellular and molecular mechanisms of RV failure. Methods and Results-A mechanical animal model of chronic progressive RV pressure overload (pulmonary artery banding, not associated with structural alterations of the lung circulation) was compared with an established model of angioproliferative pulmonary hypertension associated with fatal RV failure. Isolated RV pressure overload induced RV hypertrophy without failure, whereas in the context of angioproliferative pulmonary hypertension, RV failure developed that was associated with myocardial apoptosis, fibrosis, a decreased RV capillary density, and a decreased vascular endothelial growth factor mRNA and protein expression despite increased nuclear stabilization of hypoxia-induced factor-1␣. Induction of myocardial nuclear factor E2-related factor 2 and heme-oxygenase 1 with a dietary supplement (Protandim) prevented fibrosis and capillary loss and preserved RV function despite continuing pressure overload. Conclusion-These data brought into question the commonly held concept that RV failure associated with pulmonary hypertension is due strictly to the increased RV afterload.
Sildenafil citrate (Viagra) is the pharmacological agent used to treat erectile dysfunction in men. Because this drug has a vasodilatory effect, we hypothesized that such an action may induce a preconditioning-like cardioprotective effect via opening of mitochondrial ATP-sensitive K (K(ATP)) channels. Rabbits were treated with sildenafil citrate (0.7 mg/kg iv) either 30 min (acute phase) or 24 h (delayed phase) before 30 min of ischemia and 3 h of reperfusion. Mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD, 5 mg/kg iv) was given 10 min before ischemia-reperfusion. Infarct size was measured by tetrazolium staining. Sildenafil caused reduction in arterial blood pressure within 2 min of treatment, which returned to nearly baseline levels 3 min later. The infarct size (% risk area, means +/- SE) reduced from 33.8 +/- 1.7 in control rabbits to 10.8 +/- 0.9 during the acute phase (68% reduction, P < 0.05) and 19.9 +/- 2.0 during the delayed phase (41% reduction, P < 0.05). 5-HD abolished protection with an increase in infarct size to 35.6 +/- 0.4% and 36.8 +/- 1.6% during the acute and delayed phase, respectively (P < 0.05). Similar acute and delayed cardioprotective effects were observed when sildenafil was administered orally. Systemic hemodynamics also decreased after oral administration of the drug. However, these changes were mild and occurred slowly. For the first time, we demonstrate that sildenafil induces acute and delayed protective effects against ischemia-reperfusion injury, which are mediated by opening of mitochondrial K(ATP) channels.
The CXC chemokine IL-8, which promotes adhesion, activation, and transmigration of polymorphonuclear neutrophils (PMN), has been associated with production of tissue injury in reperfused myocardium. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric peptide that is a key regulator of genes such as heme oxygenase (HO)-1 expressed under hypoxic conditions. We hypothesized that HO-1 plays an important role in regulating proinflammatory mediator production under conditions of ischemia-reperfusion. HIF-1 was activated in the human microvascular endothelial cell line (HMEC-1) with the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). DMOG significantly attenuated cytokine-induced IL-8 promoter activity and protein secretion and cytokine-induced PMN migration across human microvascular endothelial cell line HMEC-1 monolayers. In vivo studies in a rabbit model of myocardial ischemia-reperfusion showed that rabbits pretreated with a 20 mg/kg DMOG infusion (n ϭ 6) 24 h before study exhibited a 21.58 Ϯ 1.76% infarct size compared with 35.25 Ϯ 2.06% in saline-treated ischemia-reperfusion animals (n ϭ 6, change in reduction ϭ 39%; P Ͻ 0.001). In DMOG-pretreated (20 mg/kg) animals, plasma IL-8 levels at 3 h after onset of reperfusion were 405 Ϯ 40 pg/ml vs. 790 Ϯ 40 pg/ml in saline-treated ischemiareperfusion animals (P Ͻ 0.001). DMOG pretreatment reduced myocardial myeloperoxidase activity, expressed as number of PMN per gram of myocardium, to 1.43 Ϯ 0.59 vs. 4.86 Ϯ 1.1 (P ϭ 0.012) in saline-treated ischemia-reperfused hearts. Both in vitro and in vivo DMOG-attenuated IL-8 production was associated with robust HO-1 expression. Thus our data show that HIF-1 activation induces substantial HO-1 expression that is associated with attenuated proinflammatory chemokine production by microvascular endothelium in vitro and in vivo.hypoxia-inducible factor 1; cardiac ischemia-reperfusion; interleukin-8 SIGNIFICANT CLINICAL AND EXPERIMENTAL research has focused on protection of ischemic myocardium. Successful protection strategies are diverse and have included sublethal ischemia and certain pharmacological approaches (23,27,35). The biological process now recognized as "preconditioning" enhances endogenous cellular mechanisms within the myocardium and results in protection against postischemic injury. Identifying new pharmacological agents that promote long-lasting protection against ischemia-reperfusion injury is an important goal. In this study, we examine a novel pharmacological strategy for cardiac preconditioning using an inhibitor of prolyl hydroxylase, a key enzyme controlling stabilization, and activation of hypoxia-inducible factor-1 (HIF-1). HIF-1 is a heterodimer consisting of HIF-1␣ and HIF-1 subunits (38, 39), and its activity is determined by stable expression of the ␣-subunit (11, 12). HIF-1␣ subunit activity is negatively regulated in normoxic cells by hydroxylation of proline residues that signal ubiquitination and degradation through the proteasome pathways (9, 10). Both prolyl hydroxylase inhibition and ...
Rationale Despite four decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. Objective To develop a multicenter randomized controlled trial (RCT)-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. Methods and Results With NHLBI support, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning (IPC) to reduce infarct size in three species (at two sites/species): mice (n=22-25/group), rabbits (n=11-12/group), and pigs (n=13/group). During this validation phase, i) we established protocols that gave similar results between Centers and confirmed that IPC significantly reduced infarct size in all species, and ii) we successfully established a multi-center structure to support CAESAR’s operations, including two surgical Centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center – all with the oversight of an external Protocol Review and Monitoring Committee. Conclusions CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter RCTs. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols (“CAESAR protocols”) for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.