Co-gasification of biomass can be beneficial since relying on only one type of biomass can interrupt operations if the supply of feedstock is disrupted for any reason. Despite this a gasifier system is usually designed for operation with only one specific feedstock. The gasifying of different biomasses can lead to failure or inefficiency. In this work the gasification of different forms of feedstock derived from oil palm frond was tested in an updraft gasifier that was specially designed for oil palm fronds. The feedstocks considered were dried frond blocks, briquetted fronds and overdried (at 150°C) frond blocks. The air flow rate was maintained to the value set for dried fronds in order to investigate the robustness of such configurations. The resulting syngas from the gasification was analyzed in terms of the composition of combustible gases and higher heating value (HHV). Overall, it was found that the altered forms of feedstock caused degradation in the syngas quality, which resulted in a decrease in the HHV of up to 65%.
In the gasification process, one prominent factor that affects the quality of the resulting syngas is the moisture content of the biomass feedstock. Determining the moisture content of a feedstock is considered to be one of the challenges of the process. The information about moisture content of a feedstock is required to decide the need for further drying prior to the gasification process. In this study, a novel method was developed for the evaluation of the moisture content from density of oil palm fronds (OPF) in a sufficiently accurate manner for gasification process. A total of 147 samples from different sections of freshly pruned fronds were prepared. The density of each of the samples was determined from its weight and volume. A fine sand displacement method, using fine sand and a graduated cylinder, determined the volume of OPF. The moisture content of the OPF was determined from the weight difference of the samples before and after the drying process. The experiment implied a good correlation between moisture content and density of the biomass, in which the square of the correlation coefficient (R 2 ) value was found to be satisfactory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.