Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.
Work was performed to distinguish the role of sulfonate (–SO3−) and sulfate (–OSO3−) with respect to the micellization and clouding phenomenon in ionic surfactant solutions. The clouding phenomenon is a recent addition to the conventional one observed with nonionic surfactants. Three ionic surfactants [sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSo)] are chosen and the effects of added tetra‐n‐pentylammonium bromide (TPeAB) and benzyl tributylammonium bromide (BTAC) have been studied on micellization and clouding behaviors in aqueous solution. Based on critical micelle concentration (CMC) and cloud point (CP) measurements, the following order has been observed: SDBS < SDS < SDSo. Though both SDBS and SDSo contain sulfonate groups, they are found at the two ends of the ordering. Therefore, the role of the phenyl ring is also having importance in clouding phenomena. For a typical surfactant, TPeAB was found to be more effective than BTAC. Based on the CP studies, two compositions of SDSo + TPeAB/BTAC were chosen and the effects of different additives (carbohydrate, amino acid, and l‐ascorbic acid) on the CP were investigated. Additive may either decrease or increase CP, depending on the structure of the counterion or additive. The present work shows a few novelties: (1) headgroup/counterion dependence of CP and (2) hydrophobicity of counterion/surfactant has an important bearing on the phenomenon. The data can be utilised in improving cloud point extraction methodologies (CPEMs).
New ternary binuclear complexes, The ligand and complexes have been characterized by analytical and spectral methods including UV-Vis, FTIR, 1 H NMR and ESR. Mass spectrometric data has been used further to support the formation of binuclear complexes. Magnetic studied carried out between LNT and RT and structural parameters of the complexes have been calculated by using universal field method. The complexes are observed to undergo a weak to moderate ferromagnetic coupling between two copper (II) ions with positive J values up to 73 cm -1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.