Abstract-In evolutionary multi-objective optimization, maintaining a good balance between convergence and diversity is particularly crucial to the performance of the evolutionary algorithms. In addition, it becomes increasingly important to incorporate user preferences because it will be less likely to achieve a representative subset of the Pareto optimal solutions using a limited population size as the number of objectives increases. This paper proposes a reference vector guided evolutionary algorithm for many-objective optimization. The reference vectors can not only be used to decompose the original multiobjective optimization problem into a number of single-objective sub-problems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front. In the proposed algorithm, a scalarization approach, termed angle penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space. An adaptation strategy is proposed to dynamically adjust the distribution of the reference vectors according to the scales of the objective functions. Our experimental results on a variety of benchmark test problems show that the proposed algorithm is highly competitive in comparison with five state-of-the-art evolutionary algorithms for many-objective optimization. In addition, we show that reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization. Furthermore, a reference vector regeneration strategy is proposed for handling irregular Pareto fronts. Finally, the proposed algorithm is extended for solving constrained many-objective optimization problems.
In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.
Over the last three decades, a large number of evolutionary algorithms have been developed for solving multiobjective optimization problems. However, there lacks an up-to-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multi-objective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators.Source code of PlatEMO is now available at:
Abstract-The current literature of evolutionary manyobjective optimization is merely focused on the scalability to the number of objectives, while little work has considered the scalability to the number of decision variables. Nevertheless, many real-world problems can involve both many objectives and large-scale decision variables. To tackle such large-scale many-objective optimization problems, this paper proposes a specially tailored evolutionary algorithm based on a decision variable clustering method. To begin with, the decision variable clustering method divides the decision variables into two types: convergence-related variables and diversity-related variables. Afterwards, to optimize the two types of decision variables, a convergence optimization strategy and a diversity optimization strategy are adopted. In addition, a fast non-dominated sorting approach is developed to further improve the computational efficiency of the proposed algorithm. To assess the performance of the proposed algorithm, empirical experiments have been conducted on a variety of large-scale many-objective optimization problems with up to 10 objectives and 5000 decision variables. Our experimental results demonstrate that the proposed algorithm has significant advantages over several state-of-the-art evolutionary algorithms in terms of the scalability to decision variables on many-objective optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.