Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.
A periodic metagate is designed on top of a boron nitride-graphene heterostructure to modulate the local carrier density distribution on the monolayer graphene. This causes the bandgaps of graphene surface plasmon polaritons to emerge because of either the interaction between the plasmon modes, which are mediated by the varying local carrier densities, or their interaction with the metal gates. Using the example of a double-gate graphene device, we discuss the tunable band properties of graphene plasmons due to the competition between these two mechanisms. Because of this, a bandgap inversion, which results in a Zak phase switching, can be realized through electrostatic gating. Here we also show that an anisotropic plasmonic topological edge state exists at the interface between two graphene gratings of different Zak phases. While the orientation of the dipole moments can differentiate the band topologies of each graphene grating, the angle of radiation remains a tunable property. This may serve as a stepping stone toward active control of the band structures of surface plasmons for potential applications in optical communication, wave steering, or sensing.
Semiconductor nanostructures are desirable for electronics, photonics, quantum circuitry, and energy conversion applications as well as for fundamental science. In photonics, optical nanoantennas mediate the large size difference between photons and semiconductor nanoemitters or detectors and hence are instrumental for exhibiting high efficiency. In this work we present epitaxially grown InP nanoflags as optically active nanostructures encapsulating the desired characteristics of a photonic emitter and an efficient epitaxial nanoantenna. We experimentally characterize the polarized and directional emission of the nanoflag-antenna and show the control of these properties by means of structure, dimensions, and constituents. We analyze field enhancement and light extraction by the semiconductor nanoflag antenna, which yield comparable values to enhancement factors of metallic plasmonic antennas. We incorporated quantum emitters within the nanoflag structure and characterized their emission properties. Merging of active nanoemitters with nanoantennas at a single growth process enables a new class of devices to be used in nanophotonics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.