The relationship between gut microbiota and neurological diseases, including chronic pain, has received increasing attention. The gut microbiome is a crucial modulator of visceral pain, whereas recent evidence suggests that gut microbiota may also play a critical role in many other types of chronic pain, including inflammatory pain, headache, neuropathic pain, and opioid tolerance. We present a narrative review of the current understanding on the role of gut microbiota in pain regulation and discuss the possibility of targeting gut microbiota for the management of chronic pain. Numerous signalling molecules derived from gut microbiota, such as by-products of microbiota, metabolites, neurotransmitters, and neuromodulators, act on their receptors and remarkably regulate the peripheral and central sensitisation, which in turn mediate the development of chronic pain. Gut microbiota-derived mediators serve as critical modulators for the induction of peripheral sensitisation, directly or indirectly regulating the excitability of primary nociceptive neurones. In the central nervous system, gut microbiota-derived mediators may regulate neuroinflammation, which involves the activation of cells in the bloodebrain barrier, microglia, and infiltrating immune cells, to modulate induction and maintenance of central sensitisation. Thus, we propose that gut microbiota regulates pain in the peripheral and central nervous system, and targeting gut microbiota by diet and pharmabiotic intervention may represent a new therapeutic strategy for the management of chronic pain.
Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.
Although 5-HT has been implicated in cholestatic itch and antinociception, two common phenomena in patients with cholestatic disease, the roles of 5-HT receptor subtypes are unclear. Herein, we investigated the roles of 5-HT receptors in itch and antinociception associated with cholestasis, which was induced by common bile duct ligation (BDL) in rats. 5-HT-induced enhanced scratching and antinociception to mechanical and heat stimuli were demonstrated in BDL rats. 5-HT level in the skin and spinal cord was significantly increased in BDL rats. Quantitative RT-PCR analysis showed 5-HT1B, 5-HT1D, 5-HT2A, 5-HT3A, 5-HT5B, 5-HT6, and 5-HT7 were up-regulated in peripheral nervous system and 5-HT1A, 5-HT1F, 5-HT2B, and 5-HT3A were down-regulated in the spinal cord of BDL rats. Intradermal 5-HT2, 5-HT3, and 5-HT7 receptor agonists induced scratching in BDL rats, whereas 5-HT3 agonist did not induce scratching in sham rats. 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 agonists or antagonists suppressed itch in BDL rats. 5-HT1A agonist attenuated, but 5-HT1A antagonist enhanced antinociception in BDL rats. 5-HT2 and 5-HT3 agonists or antagonists attenuated antinociception in BDL rats. Our data suggested peripheral and central 5-HT system dynamically participated in itch and antinociception under cholestasis condition and targeting 5-HT receptors may be an effective treatment for cholestatic itch.
Although postoperative adjuvant chemotherapy (PAC) with uracil -tegafur significantly improves the prognosis of patients with stage I lung adenocarcinoma, subset analysis has revealed that only 11.5% of patients with stage IB derive actual benefit from such therapy. Therefore, it is extremely important to identify patients for whom adjuvant chemotherapy will be beneficial. We performed comprehensive protein analysis of 24 surgically resected specimens of stage I adenocarcinoma using liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatical investigations to identify protein molecules. Furthermore, we carried out immunohistochemical studies of 90 adenocarcinoma specimens to validate the results of LC-MS/MS. We detected two kinds of protein molecules (myosin IIA and vimentin) by LC-MS/MS. We confirmed their immunohistochemical expression and distribution, and evaluated the relationship between the expression of these proteins and prognosis after adjuvant chemotherapy. Patients with no expression of either myosin IIA or vimentin showed a significantly better outcome regardless of PAC using uracil -tegafur. However, we were unable to select responders to uracil -tegafur using these proteins. Cases of adenocarcinoma lacking expression of either myosin IIA or vimentin show a good outcome without PAC, and therefore do not require such treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.