Emotion lexicon is an important auxiliary resource for text emotion analysis. Previous works mainly focused on positive and negative classification and less on fine-grained emotion classification. Researchers use lexicon-based methods to find that patients with depression express more negative emotions on social media. Emotional characteristics are an effective feature in detecting depression, but the traditional emotion lexicon has limitations in detecting depression and ignores many depression words. Therefore, we build an emotion lexicon for depression to further study the differences between healthy users and patients with depression. The experimental results show that the depression lexicon constructed in this paper is effective and has a better effect of classifying users with depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.