Patients with diabetes mellitus (DM) are more likely to have densely calcified lesions in the below-the-knee tibial arteries. However, the relationship between peripheral arterial calcification and local skeletal muscle perfusion has not been explored. Thirty subjects were prospectively recruited into three groups in this pilot study: (1) Non-DM: 10 people without DM; (2) DM, ABI < 1.3: 10 people with DM and normal ankle–brachial index (ABI) (0.9–1.3); and (3) DM, ABI ⩾ 1.3: 10 people with DM and ABI ⩾ 1.3. All subjects underwent calf perfusion measurements at rest and during an isometric plantarflexion contraction exercise within the magnetic resonance imaging (MRI) system. The noncontrast MRI techniques were applied to quantitatively assess skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in medial gastrocnemius and soleus muscles. Both SMBF and SMOEF reserves were calculated as the ratio of the exercise value to the resting value. Exercise SMBF and SMOEF values in the medial gastrocnemius muscle were lower in the two DM groups than in the non-DM group ( p < 0.05). The SMBF reserve in medial gastrocnemius was significantly lower in the DM, ABI ⩾ 1.3 group compared to the DM, ABI < 1.3 group ( p < 0.05). This study demonstrates that people with DM and calcified arteries had lower perfusion in gastrocnemius muscle compared to those without DM and those with DM and a normal ABI.
Objective: To evaluate regional calf muscle microcirculation in people with diabetes mellitus (DM) with and without foot ulcers, compared to healthy control people without DM, using contrast-free magnetic resonance imaging methods. Methods: Three groups of subjects were recruited: non-DM controls, DM, and DM with foot ulcers (DM + ulcer), all with ankle brachial index (ABI) > 0.9. Skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in calf muscle were measured at rest and during a 5-min isometric ankle plantarflexion exercise. Subjects completed the Yale physical activity survey. Results: The exercise SMBF (ml/min/100 g) of the medial gastrocnemius muscle were progressively impaired: 63.7 ± 18.9 for controls, 42.9 ± 6.7 for DM, and 36.2 ± 6.2 for DM + ulcer, p < 0.001. Corresponding exercise SMOEF was the lowest in DM + ulcers (0.48 ± 0.09). Exercise SMBF in the soleus muscle was correlated moderately with the Yale physical activity survey ( r = 0.39, p < 0.01). Conclusions: Contrast-free MR imaging identified progressively impaired regional microcirculation in medial gastrocnemius muscles of people with DM with and without foot ulcers. Exercise SMBF in the medial gastrocnemius muscle was the most sensitive index and was associated with HbA1c. Lower exercise SMBF in the soleus muscle was associated with lower Yale score.
Background First-pass perfusion imaging in magnetic resonance imaging (MRI) is an established method to measure myocardial blood flow (MBF). An obstacle for accurate quantification of MBF is the saturation of blood pool signal intensity used for arterial input function (AIF). The objective of this project was to validate a new simplified method for AIF estimation obtained from single-bolus and single sequence perfusion measurements. The reference MBF was measured simultaneously on 13N-ammonia positron emission tomography (PET). Methods Sixteen patients with clinically confirmed myocardial ischemia were imaged in a clinical whole-body PET-MRI system. PET perfusion imaging was performed in a 10-min acquisition after the injection of 10 mCi of 13N-ammonia. The MRI perfusion acquisition started simultaneously with the start of the PET acquisition after the injection of a 0.075 mmol/kg gadolinium contrast agent. Cardiac stress imaging was initiated after the administration of regadenoson 20 s prior to PET-MRI scanning. The saturation part of the MRI AIF data was modeled as a gamma variate curve, which was then estimated for a true AIF by minimizing a cost function according to various boundary conditions. A standard AHA 16-segment model was used for comparative analysis of absolute MBF from PET and MRI. Results Overall, there were 256 segments in 16 patients, mean resting perfusion for PET was 1.06 ± 0.34 ml/min/g and 1.04 ± 0.30 ml/min/g for MRI (P = 0.05), whereas mean stress perfusion for PET was 2.00 ± 0.74 ml/min/g and 2.12 ± 0.76 ml/min/g for MRI (P < 0.01). Linear regression analysis in MBF revealed strong correlation (r = 0.91, slope = 0.96, P < 0.001) between PET and MRI. Myocardial perfusion reserve, calculated from the ratio of stress MBF over resting MBF, also showed a strong correlation between MRI and PET measurements (r = 0.82, slope = 0.81, P < 0.001). Conclusion The results demonstrated the feasibility of the simplified AIF estimation method for the accurate quantification of MBF by MRI with single sequence and single contrast injection. The MRI MBF correlated strongly with PET MBF obtained simultaneously. This post-processing technique will allow easy transformation of clinical perfusion imaging data into quantitative information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.