X rays produced during electron-beam deposition of metallic electrodes drastically change the performance of organic spintronic devices. The x rays generate traps with an activation energy of ≈0.5 eV in a commonly used organic. These traps lead to a dramatic decrease in spin-diffusion length in organic spin valves. In organic magnetoresistive (OMAR) devices, however, the traps strongly enhance magnetoresistance. OMAR is an intrinsic magnetotransport phenomenon and does not rely on spin injection. We discuss our observations in the framework of currently existing theories.
Treatment of [OsCl(2)(PPh(3))(3)] with HC[triple bond]CCH(OH)C[triple bond]CH/PPh(3) produces the osmabenzene [Os{CHC(PPh(3))CHC(PPh(3))CH}Cl(2)(PPh(3))(2)][OH] (2), which is air stable in both solution and solid state. The key intermediate of the one-pot reaction, [OsCl(2){CH=C(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (3), and the related complex [Os(NCS)(2){CHC(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (7) have been isolated and characterized, further supporting the proposed mechanisms for the reaction. Reactions of 3 with PPh(3), NaI, and NaSCN give osmabenzene 2, iodo-substituted osmabenzene [Os{CHC(PPh(3))CHCICH}I(2)(PPh(3))(2)] (4), and thiocyanato-substituted osmabenzene [Os{CHC(PPh(3))CHC(SCN)CH}(NCS)(2)(PPh(3))(2)] (5) respectively. Similarly, reaction of [OsBr(2)(PPh(3))(3)] with HC[triple bond]CCH(OH)C[triple bond] CH in THF produces [OsBr(2){CH=C(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (9), which reacts with PPh(3)/Bu(4)NBr to give osmabenzene [Os{CHC(PPh(3))CHC(PPh(3))CH}Br(2)(PPh(3))(2)]Br (10). Ligand substitution reactions of 2 produce a series of new stable osmabenzenes 11-17. An electrochemical study shows that osmabenzenes 2, 12, and 14-17 have interesting different electrochemical properties due to the different co-ligand. The oxidation potentials of complexes 2, 12, 16, and 17 with Cl, NCS, and N(CN)(2) ligands gradually positively shift in the sequence of Cl
We report herein the first study on the chemical interaction between metallabenzenes and bioactive molecules. Due to its unique stereoelectronic activities, a phenanthroline-derived ruthenabenzene [Ru{CHC(PPh(3))CHC(PPh(3))CH}Cl(C(12)H(8)N(2))(PPh(3))]Cl(2) (1) selectively binds cysteine in aqueous solution at physiological pH and then undergoes a dynamic inversion of configuration at the Ru center. The structure of the L-cysteine-binding product of 1 has been determined by means of X-ray diffraction. The replacement of the L-cysteine with the D form results in an inverted stereodynamic effect. Furthermore, the inversion process of the Ru-centered configuration could be conveniently controlled by a simple pH adjustment. This is attributed to the significant influence of a special intramolecular electrostatic interaction on the dynamic epimerization process of the cysteine-binding product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.