Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%).
Thermotaxis has been demonstrated to be an important criterion for sperm evaluation, yet clinical assessment of thermotaxis capacity is currently lacking. In this article, the on-chip thermotaxis evaluation of human sperm is presented for the first time using an interfacial valve-facilitated microfluidic device. The temperature gradient was established and accurately controlled by an external temperature gradient control system. The temperature gradient responsive sperm population was enriched into one of the branch channels with higher temperature setting and the non-responsive ones were evenly distributed into the two branch channels. We employed air-liquid interfacial valves to ensure stable isolation of the two branches, facilitating convenient manipulation of the entrapped sperm. With this device, thermotactic responses were observed in 5.7%-10.6% of the motile sperm moving through four temperature ranges (34.0-35.3 °C, 35.0-36.3 °C, 36.0-37.3 °C, and 37.0-38.3 °C, respectively). In conclusion, we have developed a new method for high throughput clinical evaluation of sperm thermotaxis and this method may allow other researchers to derive better IVF procedure.
In sexual assault cases, forensic samples are a mixture of sperm from the perpetrator and epithelial cells from the victim. To obtain an independent short tandem repeat (STR) profile of the perpetrator, sperm cells must be separated from the mixture of cells. However, the current method used in crime laboratories, namely, differential extraction, is a time-consuming and labor-intensive process. To achieve a rapid and automated sample pretreatment process, we fabricated a microdevice for hydrodynamic and size-based separation of sperm and epithelial cells. When cells in suspension were introduced into the device's microfluidic channels, they were forced to flow along different streamlines and into different outlets due to their different diameters. With the proposed microdevice, sperm can be separated within a short period of time (0.5 h for a 50-ll mock sample). The STR profiles of the products in the sperm outlet reservoir demonstrated that a highly purified male DNA fraction could be obtained (94.0% male fraction). This microdevice is of low-cost and can be easily integrated with other subsequent analysis units, providing great potential in the process of analyzing sexual assault evidence as well as in other areas requiring cell sorting. V C 2015 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.