We propose a muscle-driven motion generation approach to realize virtual human motion with user interaction and higher fidelity, which can address the problem that the joint-driven fails to reflect the motion process of the human body. First, a simplified virtual human musculoskeletal model is built based on human biomechanics. Then, a hierarchical policy learning framework is constructed including motion tracking layer, SPD controller and muscle control layer. The motion tracking layer is responsible for mimicking reference motion and completing control command, using proximal policy optimization to train the policy; the muscle control layer is aimed to minimize muscle energy consumption and train the policy based on supervised learning; the SPD controller acts as a link between the two layers. At the same time, we integrate the curriculum learning to improve the efficiency and success rate of policy training. Simulation experiments show that the proposed approach can use motion capture data and pose estimation data as reference motions to generate better and more adaptable motions. Furthermore, the virtual human has the ability to respond to the user control command during the motion, and can complete the target task successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.