SUMMARY Arabidopsis thaliana ABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box‐binding complex, form the so‐called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation‐tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developing abi3‐5 and wild‐type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist in cis motifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targets AUXIN RESPONSE FACTOR (ARF)10 and ARF16 that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encoding MIR156 but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the other LAFL genes, and the VP1/ABI3‐LIKE (VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.
AGAMOUS-Like 18 (AGL18) is a MADS domain transcription factor (TF) that is structurally related to AGL15. Here we show that, like AGL15, AGL18 can promote somatic embryogenesis (SE) when ectopically expressed in Arabidopsis (Arabidopsis thaliana). Based on loss-of-function mutants, AGL15 and AGL18 have redundant functions in developmental processes such as SE. To understand the nature of this redundancy, we undertook a number of studies to look at the interaction between these factors. We studied the genome-wide direct targets of AGL18 to characterize its roles at the molecular level using chromatin immunoprecipitation (ChIP)-SEQ combined with RNA-SEQ. The results demonstrated that AGL18 binds to thousands of sites in the genome. Comparison of ChIP-SEQ data for AGL15 and AGL18 revealed substantial numbers of genes bound by both AGL15 and AGL18, but there were also differences. Gene ontology analysis revealed that target genes were enriched for seed, embryo, and reproductive development as well as hormone and stress responses. The results also demonstrated that AGL15 and AGL18 interact in a complex regulatory loop, where AGL15 inhibited transcript accumulation of AGL18, while AGL18 increased AGL15 transcript accumulation. Co-immunoprecipitation revealed an interaction between AGL18 and AGL15 in somatic embryo tissue. The binding and expression analyses revealed a complex crosstalk and interactions among embryo TFs and their target genes. In addition, our study also revealed that phosphorylation of AGL18 and AGL15 was crucial for the promotion of SE.
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
AGAMOUS-like 15 (AGL15) is a member of the MADS-domain transcription factor (TF) family. MADS proteins are named for a conserved domain that was originally from an acronym derived from genes expressed in a variety of eukaryotes (MCM1-AGAMOUS-DEFICIENS-SERUM RESPONSE FACTOR). In plants, this family has expanded greatly, with more than one-hundred members generally found in dicots, and the proteins encoded by these genes have often been associated with developmental identity. AGL15 transcript and protein accumulate primarily in embryos and has been found to promote an important process called plant regeneration via somatic embryogenesis (SE). To understand how this TF performs this function, we have previously used microarray technologies to assess direct and indirect responsive targets of this TF. We have now revisited this question using next generation sequencing (NGS) to both characterize in vivo binding sites for AGL15 as well as response to the accumulation of AGL15. We compared these data to the prior microarray results to evaluate the different platforms. The new NGS data brought to light an interaction with brassinosteroid (BR) hormone signaling that was “missed” in prior Gene Ontology analysis from the microarray studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.