Background Erdheim–Chester disease (ECD), a rare inflammatory myeloid neoplasm, is known to be fundamentally reliant on the constitutive activation of the MAPK signaling pathway in the majority of patients. Consequently, inhibition of the V600E-mutant BRAF kinase has proven to be a safe and efficacious long-term therapeutic strategy for BRAF-mutant ECD patients. Nevertheless, in a subset of patients with CNS disease, the efficacy of long-term treatment may diminish, facilitating suboptimal responses or disease progression. Methods We retrospectively describe 3 BRAF-mutant ECD patients whose treatment with Vemurafenib was upgraded to Vemurafenib/Cobimetinib due to either disease progression, insufficient response, or unacceptable toxicity. CNS response to therapy was evaluated using magnetic resonance imaging (MRI) and extra-cranial disease was monitored using 18F-fludeoxyglucose positron emission tomography/computed tomography (PET/CT). Results Three patients with a mean age of 52.6 years were treated with Vemurafenib for a mean duration of 26.6 months (range: 6–52). Monotherapies were upgraded to Vemurafenib/Cobimetinib dual therapy. The combination therapy was administered for a mean duration of 21 months (range: 19–23). All patients exhibited clinical and neurological improvement. Regression of lesions on MRI was noted in 2 patients. Both patients characterized by a PET-avid disease responded to the biological treatment regimen with complete metabolic remissions. Conclusion Dual inhibition of BRAF and downstream MEK may be a safe and effective therapeutic strategy for BRAF-mutant ECD patients for whom BRAF inhibitor therapy proved insufficient and as such appropriate for the long-term management of CNS disease in ECD.
Erdheim–Chester disease (ECD) is characterized by excessive production and accumulation of histiocytes within multiple tissues and organs. ECD patients harbor recurrent mutations of genes associated with the RAS/RAF/MEK/ERK signaling pathway, particularly, the BRAFV600E mutation. Following our previous finding that miR-15a-5p is the most prominently downregulated microRNA in ECD patients compared to healthy individuals, we elucidated its role in ECD pathogenesis. Bioinformatics analysis followed by a luciferase assay showed that chemokine ligand 10 (CXCL10) is a target gene regulated by miRNA-15a-5p. This was confirmed in 24/34 ECD patients that had low expression of miR-15a-5p concurrent with upregulated CXCL10. Overexpression of miR-15a-5p in cell lines harboring BRAF or RAS mutations (Ba/F3, KG-1a and OCI-AML3) resulted in CXCL10 downregulation, followed by LIN28a and p-ERK signaling downregulation and let-7 family upregulation. Overexpression of miR-15a-5p inhibited cell growth and induced apoptosis by decreasing Bcl-2 and Bcl-xl levels. Analysis of sequential samples from 7 ECD patients treated with MAPK inhibitors (vemurafenib/cobimetinib) for 4 months showed miR-15a-5p upregulation and CXCL10 downregulation. Our findings suggest that miR-15a-5p is a tumor suppressor in ECD through the CXCL10-ERK-LIN28a-let7 axis, highlighting another layer of post-transcriptional regulation in this disease. Upregulation of miR-15a-5p in ECD patients may have a potential therapeutic role.
The pathogenesis of histiocytic neoplasms is driven by mutations activating the MAPK/ERK pathway, but little is known about the transcriptional and post-transcriptional alterations involved in these neoplasms. We analyzed microRNA (miRNA) expression in plasma samples and tissue biopsies of Erdheim–Chester disease (ECD) and Langerhans cell histiocytosis (LCH) patients. In silico analysis revealed a potential role of miRNAs in regulating gene expression in these neoplasms as compared with healthy controls (HC). NanoString analysis revealed 101 differentially expressed plasma miRNAs in 16 ECD patients as compared with 11 HC, 95% of which were downregulated. MiRNAs-15a-5p, -15b-5p, -21-5p, -107, -221-3p, -320e, -630, and let-7 family miRNAs were further evaluated by qRT-PCR in an extended cohort of 32 ECD patients, seven LCH and 15 HC. Six miRNAs (let-7a, let-7c, miR-15a-5p, miR-15b-5p, miR-107 and miR-630) were highly expressed in LCH plasma and tissue samples as compared with ECD. Pathway enrichment analysis indicated the miRNA contribution to inflammatory and pro-survival signaling pathways. Moreover, the let-7 family members were downregulated in untreated ECD patients as compared with HC, while treatment with MAPK/ERK signaling inhibitors for 16 weeks resulted in their upregulation, which was in parallel with the radiologic response seen by PET-CT. The study highlights the potential contribution of miRNA to the inflammatory and neoplastic characteristics of ECD and LCH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.