Background Nerol (C10H18O), an acyclic monoterpene, naturally presents in plant essential oils, and is used widely in food, cosmetics and pharmaceuticals as the valuable fragrance. Meanwhile, chemical synthesis is the only strategy for large-scale production of nerol, and the disadvantages of chemical synthesis greatly limit the production and its application. These defects drive the interests of researchers shift to the production of nerol by eco-friendly methods known as biosynthesis methods. However, the main technical bottleneck restricting the biosynthesis of nerol is the lacking of corresponding natural aroma-producing microorganisms. Results In this study, a novel multi-stress-tolerant probiotics Meyerozymaguilliermondii GXDK6 with aroma-producing properties was identified by whole genome sequencing and metabolomics technology. GXDK6 showed a broad pH tolerance in the range of 2.5–10.0. The species also showed salt tolerance with up to 12% NaCl and up to 18% of KCl or MgCl2. GXDK6 exhibited heavy-metal Mn2+ tolerance of up to 5494 ppm. GXDK6 could also ferment with a total of 21 kinds of single organic matter as the carbon source, and produce abundant aromatic metabolites. Results from the gas chromatography–mass spectrometry indicated the production of 8–14 types of aromatic metabolites (isopentanol, nerol, geraniol, phenylethanol, isobutanol, etc.) when GXDK6 was fermented up to 72 h with glucose, sucrose, fructose, or xylose as the single carbon source. Among them, nerol was found to be a novel aromatic metabolite from GXDK6 fermentation, and its biosynthesis mechanism had also been further revealed. Conclusion A novel aroma-producing M. guilliermondii GXDK6 was identified successfully by whole genome sequencing and metabolomics technology. GXDK6 showed high multi-stress-tolerant properties with acid–base, salty, and heavy-metal environments. The aroma-producing mechanism of nerol in GXDK6 had also been revealed. These findings indicated the aroma-producing M. guilliermondii GXDK6 with multi-stress-tolerant properties has great potential value in the fermentation industry.
In this study, the concentration of fluoride and the associated health risks for infants, children, and adults were analyzed and compared for three drinking water sources in Yancheng City, Jiangsu Province, China. To analyze the relationship between the water quality parameters of pH, fluoride (F−), sulfate (SO42−), chloride (Cl−), total dissolved solids (TDS), total alkalinity (TAlk), sodium (Na+), and potassium (K+), statistical analyses including correlation analysis, R-mode cluster analysis and factor analysis were performed based on monthly data from the year 2010 to 2015. The results indicated: (1) Fluoride concentrations in the drinking water sources ranged from 0.38 to 1.00 mg L−1 (mean = 0.57 mg L−1) following the order of Tongyu River > Yanlong Lake > Mangshe River; (2) fluoride concentrations in 22.93% of the collected samples were lower than 0.5 mg L−1, which has the risk of tooth cavities, especially for the Mangshe River; (3) the fluoride exposure levels of infants were higher than children and adults, and 3.2% of the fluoride exposure levels of infants were higher than the recommended toxicity reference value of 122 μg kg−1 d−1 as referenced by Health Canada, which might cause dental fluorosis issues; (4) the physico-chemical characteristics are classified the into four groups reflecting F−- TAlk, Na+-K+, SO42−-Cl−, and pH-TDS, respectively, indicating that fluoride solubility in drinking water is TAlk dependent, which is also verified by R-mode cluster analysis and factor analysis. The results obtained supply useful information for the health department in Yancheng City, encouraging them to pay more attention to fluoride concentration and TAlk in drinking water sources.
Butyl glucoside synthesis using bioenzymatic methods at high temperatures has gained increasing interest. Protein engineering using directed evolution of a metagenome-derived β-glucosidase of Bgl1D was performed to identify enzymes with improved activity and thermostability. An interesting mutant Bgl1D187 protein containing five amino acid substitutions (S28T, Y37H, D44E, R91G, and L115N), showed catalytic efficiency (kcat/Km of 561.72 mM−1 s−1) toward ρ-nitrophenyl-β-d-glucopyranoside (ρNPG) that increased by 23-fold, half-life of inactivation by 10-fold, and further retained transglycosidation activity at 50 °C as compared with the wild-type Bgl1D protein. Site-directed mutagenesis also revealed that Asp44 residue was essential to β-glucosidase activity of Bgl1D. This study improved our understanding of the key amino acids of the novel β-glucosidases and presented a raw material with enhanced catalytic activity and thermostability for the synthesis of butyl glucosides.
Motivation Sulfate reduction is an important process in the sulfur cycle. However, the relationship between this process and the genotype of microorganisms involved in subtropical mangrove ecosystems is poorly understood. Genotyping can identify and is crucial for sulfate reduction in mangrove ecosystems with high sulfur concentrations. A professional and efficient gene integration database of sulfur metabolism has not been established yet. Results This work aimed to evaluate sulfate reduction by microorganisms in mangroves by using a sulfur metabolism gene integrative database (SMDB) that was mainly constructed to analyze the sulfur cycle (sub) gene families quickly and accurately. The database achieved high coverage, fast retrieval, and low false positives. Relative enrichment of sulfate adenylyltransferase indicated that environmental factors select for a partial dissimilatory sulfate reduction process. Furthermore, the sulfate reduction community compensates by producing certain sulfate-reduction genes in response to high-sulfur environments in mangrove sediments. Taxonomic assignment of dissimilatory sulfate-reduction genes revealed that Crenarchaeota and Halobacterota are completely responsible for this process. Sulfite reductase can help the community cope with the toxic sulfite produced by these Archaea phyla. Collectively, these findings suggested that Halobacterota and Crenarchaeota play essential roles in dissimilatory sulfate reduction. Availability and implementation SMDB is freely available under http://smdb.gxu.edu.cn/ and https://github.com/taylor19891213/sulfur-metabolism-gene-database. Supplementary information Supplementary data are available at Bioinformatics online.
BackgroundNerol (C10H18O), an acyclic monoterpene, naturally presents in plant essential oils, and is used widely in food, cosmetics and pharmaceuticals as the valuable fragrance. Meanwhile, chemical synthesis is the only strategy for large-scale production of nerol, and the disadvantages of chemical synthesis greatly limited the production and its application. These defects drive the interests of researchers shift to the production of nerol by eco-friendly methods known as biosynthesis methods. However, the main technical bottleneck restricting the biosynthesis of nerol is the lacking of corresponding natural aroma-producing microorganisms.ResultsIn this study, a novel multi-stress-tolerant probiotics Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified by whole genome sequencing and metabolomics technology. GXDK6 showed a broad pH tolerance in the range of 2.5–10.0. The species also showed salt tolerance with up to 12% NaCl and up to 18% of KCl or MgCl2. GXDK6 exhibited heavy-metal Mn2+ tolerance of up to 5494 ppm. GXDK6 could also ferment with a total of 21 kinds of single organic matter as the carbon source, and produce abundant aromatic metabolites. Results from the gas chromatography–mass spectrometry indicated the production of 8–14 types of aromatic metabolites (isopentanol, nerol, geraniol, phenylethanol, isobutanol, etc.) when GXDK6 was fermented up to 72 h with glucose, sucrose, fructose, or xylose as the single carbon source. Among of them, nerol was found as a novel aromatic metabolite from GXDK6 fermentation, and its biosynthesis mechanism had also been further revealed.ConclusionA novel aroma-producing M. guilliermondii GXDK6 was identified successfully by whole genome sequencing and metabolomics technology. GXDK6 showed high multi-stress-tolerant properties with acid–base, salty, and heavy-metal environments. The aroma-producing mechanism of nerol in GXDK6 had also been revealed. These findings indicated the aroma-producing M. guilliermondii GXDK6 with multi-stress-tolerant properties has great potential value in the fermentation industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.