Context As a novel coronavirus swept the world in early 2020, thousands of software developers began working from home. Many did so on short notice, under difficult and stressful conditions. Objective This study investigates the effects of the pandemic on developers’ wellbeing and productivity. Method A questionnaire survey was created mainly from existing, validated scales and translated into 12 languages. The data was analyzed using non-parametric inferential statistics and structural equation modeling. Results The questionnaire received 2225 usable responses from 53 countries. Factor analysis supported the validity of the scales and the structural model achieved a good fit (CFI = 0.961, RMSEA = 0.051, SRMR = 0.067). Confirmatory results include: (1) the pandemic has had a negative effect on developers’ wellbeing and productivity; (2) productivity and wellbeing are closely related; (3) disaster preparedness, fear related to the pandemic and home office ergonomics all affect wellbeing or productivity. Exploratory analysis suggests that: (1) women, parents and people with disabilities may be disproportionately affected; (2) different people need different kinds of support. Conclusions To improve employee productivity, software companies should focus on maximizing employee wellbeing and improving the ergonomics of employees’ home offices. Women, parents and disabled persons may require extra support.
Users of the Twitter microblogging platform share a vast amount of information about various topics through short messages on a daily basis. Some of these so called tweets include information that is relevant for software companies and could, for example, help requirements engineers to identify user needs. Therefore, tweets have the potential to aid in the continuous evolution of software applications. Despite the existence of such relevant tweets, little is known about their number and content. In this paper we report on the results of an exploratory study in which we analyzed the usage characteristics, content and automatic classification potential of tweets about software applications by using descriptive statistics, content analysis and machine learning techniques. Although the manual search of relevant information within the vast stream of tweets can be compared to looking for a needle in a haystack, our analysis shows that tweets provide a valuable input for software companies. Furthermore, our results demonstrate that machine learning techniques have the capacity to identify and harvest relevant information automatically.
Users of the Twitter microblogging platform share a considerable amount of information through short messages on a daily basis. Some of these so-called tweets discuss issues related to software and could include information that is relevant to the companies developing these applications. Such tweets have the potential to help requirements engineers better understand user needs and therefore provide important information for software evolution. However, little is known about the nature of tweets discussing software-related issues. In this paper, we report on the usage characteristics, content and automatic classification potential of tweets about software applications. Our results are based on an exploratory study in which we used descriptive statistics, content analysis, machine learning and lexical sentiment analysis to explore a dataset of 10,986,495 tweets about 30 different software applications. Our results show that searching for relevant information on software applications within the vast stream of tweets can be compared to looking for a needle in a haystack. However, this relevant information can provide valuable input for software companies and support the continuous evolution of the applications discussed in these tweets. Furthermore, our results show that it is possible to use machine learning and lexical sentiment analysis techniques to automatically extract information about the tweets regarding their relevance, authors and sentiment polarity.
Chat messages of development teams play an increasingly significant role in software development, having replaced emails in some cases. Chat messages contain information about discussed issues, considered alternatives and argumentation leading to the decisions made during software development. These elements, defined as rationale, are invaluable during software evolution for documenting and reusing development knowledge. Rationale is also essential for coping with changes and for effective maintenance of the software system. However, exploiting the rationale hidden in the chat messages is challenging due to the high volume of unstructured messages covering a wide range of topics. This work presents the results of an exploratory study examining the frequency of rationale in chat messages, the completeness of the available rationale and the potential of automatic techniques for rationale extraction. For this purpose, we apply content analysis and machine learning techniques on more than 8,700 chat messages from three software development projects. Our results show that chat messages are a rich source of rationale and that machine learning is a promising technique for detecting rationale and identifying different rationale elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.