Electroencephalogram (EEG) is one of the most powerful tools that offer valuable information related to different abnormalities in the human brain. One of these abnormalities is the epileptic seizure. A framework is proposed for detecting epileptic seizures from EEG signals recorded from normal and epileptic patients. The suggested approach is designed to classify the abnormal signal from the normal one automatically. This work aims to improve the accuracy of epileptic seizure detection and reduce computational costs. To address this, the proposed framework uses the 54-DWT mother wavelets analysis of EEG signals using the Genetic algorithm (GA) in combination with other four machine learning (ML) classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Naive Bayes (NB). The performance of 14 different combinations of two-class epilepsy detection is investigated using these four ML classifiers. The experimental results show that the four classifiers produce comparable results for the derived statistical features from the 54-DWT mother wavelets; however, the ANN classifier achieved the best accuracy in most datasets combinations, and it outperformed the other examined classifiers. INDEX TERMS Electroencephalogram (EEG), discrete wavelet transform (DWT), epilepsy, artificial neural network, k-nearest neighbor (k-NN), support vector machine (SVM), naïve bayes (NB).
Many approaches have been proposed using Electroencephalogram (EEG) to detect epilepsy seizures in their early stages. Epilepsy seizure is a severe neurological disease. Practitioners continue to rely on manual testing of EEG signals. Artificial intelligence (AI) and Machine Learning (ML) can effectively deal with this problem. ML can be used to classify EEG signals employing feature extraction techniques. This work focuses on automated detection for epilepsy seizures using ML techniques. Various algorithms are investigated, such as Bagging, Decision Tree (DT), Adaboost, Support vector machine (SVM), K-nearest neighbors(KNN), Artificial neural network(ANN), Naïve Bayes, and Random Forest (RF) to distinguish injected signals from normal ones with high accuracy. In this work, 54 Discrete wavelet transforms (DWTs) are used for feature extraction, and the similarity distance is applied to identify the most powerful features. The features are then selected to form the features matrix. The matrix is subsequently used to train ML. The proposed approach is evaluated through different metrics such as F-measure, precision, accuracy, and Recall. The experimental results show that the SVM and Bagging classifiers in some data set combinations, outperforming all other classifiers
Many approaches have been proposed using Electroencephalogram (EEG) to detect epilepsy seizures in their early stages. Epilepsy seizure is a severe neurological disease. Practitioners continue to rely on manual testing of EEG signals. Artificial intelligence (AI) and Machine Learning (ML) can effectively deal with this problem. ML can be used to classify EEG signals employing feature extraction techniques. This work focuses on automated detection for epilepsy seizures using ML techniques. Various algorithms are investigated, such as Bagging, Decision Tree (DT), Adaboost, Support vector machine (SVM), K-nearest neighbors(KNN), Artificial neural network(ANN), Naïve Bayes, and Random Forest (RF) to distinguish injected signals from normal ones with high accuracy. In this work, 54 Discrete wavelet transforms (DWTs) are used for feature extraction, and the similarity distance is applied to identify the most powerful features. The features are then selected to form the features matrix. The matrix is subsequently used to train ML. The proposed approach is evaluated through different metrics such as F-measure, precision, accuracy, and Recall. The experimental results show that the SVM and Bagging classifiers in some data set combinations, outperforming all other classifiers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.