In this brief report, we demonstrate that Kerr effect measurements, which determine the excess birefringence contributed by polymer solutes in dilute solutions observed under a strong electric field, are highly sensitive to and capable of determining their microstructures, as well as their locations along the macromolecular backbone. Specifically, using atactic triblock copolymers with the same overall composition of styrene (S) and p‐bromostyrene (pBrS) units, but with two different block arrangements, that is, pBrS90‐b‐S120‐b‐pBrS90 (I) and S60‐b‐pBrS180‐b‐S60 (II), which are indistinguishable by NMR, we detected a dramatic difference in their molar Kerr constants (mK), in agreement with those previously estimated. Although similar in magnitude, their Kerr constants differ in sign, with mK(II) positive and mK(I) negative. In addition, S/pBrS random and gradient copolymers synthesized by reversible addition‐fragmentation chain‐transfer (RAFT) polymerization exhibit a heretofore unexpected enhanced enchainment of racemic (r) pBrS‐pBrS diads. Comparison of their observed and calculated mKs suggests that the gradient S/pBrS copolymers possess an unanticipated additional gradient in stereosequence that parallels their comonomer gradient, that is, as the concentration of pBrs units decreases from one end of the copolymer chain to the other, so does the content of r diads. This conclusion could only be reached by comparison of observed and calculated Kerr effects, which access the global properties of macromolecules, and not NMR, which is only sensitive to local polymer structural environments, but not to their locations on the copolymer chains. Molar Kerr constants are characteristic of entire polymer chains and are highly sensitive to their constituent microstructures and their distribution along the chain. They may be used to both identify constituent microstructures and locate them along the polymer chain, thereby enabling, for the first time, characterization of their complete macrostructures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013
The macrostructures of synthetic polymers are essentially the complete molecular chain architectures, including the types and amounts of constituent short-range microstructures, such as the regio-and stereosequences of the inserted monomers, the amounts and sequences of monomers found in co-, ter-, and tetra-polymers, branching, inadvertent, and otherwise, etc. Currently, the best method for characterizing polymer microstructures uses high field, high resolution 13 C-nuclear magnetic resonance (NMR) spectroscopy observed in solution. However, even 13 C-NMR is incapable of determining the locations or positions of resident polymer microstructures, which are required to elucidate their complete macrostructures. The sequences of amino acid residues in proteins, or their primary structures, cannot be characterized by NMR or other short-range spectroscopic methods, but only by decoding the DNA used in their syntheses or, if available, X-ray analysis of their single crystals. Similarly, there are currently no experimental means to determine the sequences or locations of constituent microstructures along the chains of synthetic macromolecules. Thus, we are presently unable to determine their macrostructures. As protein tertiary and quaternary structures and their resulting ultimate functions are determined by their primary sequence of amino acids, so too are the behaviors and properties of synthetic polymers critically dependent on their macrostructures. We seek to raise the consciousness of both synthetic and physical polymer scientists and engineers to the importance of characterizing polymer macrostructures when attempting to develop structure-property relations. To help achieve this task, we suggest using the electrical birefringence or Kerr effects observed in their dilute solutions. The molar Kerr constants of polymer solutes contributing to the birefringence of their solutions, under the application of a strong electric field, are highly sensitive to both the types and locations of their constituent microstructures. As a consequence, we may begin to characterize the macrostructures of synthetic polymers by means of the Kerr effect. To simplify implementation of the Kerr effect to characterize polymer macrostructures, we suggest that NMR first be used to determine the types and amounts of constituent microstructures present. Subsequent comparison of observed Kerr effects with those predicted for different microstructural locations along the polymer chains can then be used to identify the most likely macrostructures. V C 2014 Wiley Periodicals, Inc. J.
The potentially extreme heterogeneity of polymer micro-and macrostructures has been demonstrated and a means for characterizing them has been suggested. To ensure that all possible microstructures, such as diad stereosequences in vinyl homopolymers and monomer sequences in copolymers, including their locations along polymer chains, that is, all macrostructures, are represented, it became necessary to generate samples with huge quantities (many many tons) of constituent polymer chains. This suggested a practical need for distinguishing between polymer samples with chains that have homogeneous and heterogeneous populations of micro-and macrostructures. A combination of high resolution 13 C-nuclear magnetic resonance to determine the types and amounts of constituent short-range microstructures, and dilute solution electrical birefringence or Kerr effect measurements to locate them along the polymer chains has been suggested, and may be able to achieve this distinction. This combination of techniques is required to reduce the innumerably large numbers of different possible polymer macrostructres whose Kerr constants would have to be calculated, for comparison to the observed values. The ability to determine polymer macrostructures is critical to the development of relevant, more meaningful, and therefore, improved structure-property relations for polymer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.