Major objectives of this study were to produce low-emitting wood pellet biofuel from selected agro-forest tree species, i.e., Kikar (Acacia nilotica), Oak (Quercus semicarpifolia), and Mesquite (Prosopis juliflora), grown in the southern part of the Khyber Pakhtunkhwa (KP) province of Pakistan using indigenously developed technology (pelletizer machine). Primary raw material, such as sawdust of the selected agro-forest tree species, was obtained from sawmills located in southern part of KP. Life cycle inventory (LCI) was sourced for entire production chain of the wood pellet biofuel by measuring quantities of various inputs consumed and output produced. In addition, the wood pellets were characterized to examine diameter, length, moisture content, ash content, bulk density, high heating value (HHV), low heating value (LHV), as well as nitrogen and sulphur contents. A comprehensive life cycle assessment was performed for wood pellet biofuel production chain using SimaPro v9.1 software. A functional unit of one (01) kilogram (kg) wood pellet biofuel was applied following a gate-to-gate approach. The results of the present study were in accordance with the recommended Italian standard CTI-R except for pellet bulk density and nitrogen content. The bulk density for all wood pellets, manufactured from the saw dust of three different agro-forest tree species, were lower than the recommended Italian standard, while for nitrogen content, the results were higher than the recommended Italian standard. Among the environmental impacts, Kikar (Acacia nilotica) wood pellets were the major contributor to fossil fuel depletion, followed by ecotoxicity, mineral depletion and acidification/eutrophication. This was primarily due to lubricating oil and urea-formaldehyde (UF) resin used as inputs in the wood pellets biofuel manufacture. Likewise, human health and ecosystem quality was also affected by lubricating oil, UF resin, and saw dust, respectively. In cumulative exergy demand of 1 kg wood pellets biofuel, the highest impact was from Kikar wood pellets for non-renewable fossils, mainly due to lubricating oil used. Difference in environmental impacts, damage assessment, and exergy were examined in three different scenarios for major hotspot inputs by reducing 20% lubricating oil in case 1, 20% UF resin in case 2, and without usage of UF resin in case 3, while marked reduction was observed in ecotoxicity, fossil fuel, and mineral depletion, as well as acidification/eutrophication impact category. Moreover, a pronounced reduction was also noted in the non-renewable fossil fuel category of cumulative exergy demand of one kg of wood pellets biofuel produced.
According to IPCC Annual Report (AR-5), environmental impact assessment of any product prototype is recommended before its large-scale commercialization; however, no environmental profile analysis of any biodiesel prototype has been conducted in Pakistan. Therefore, objective of this study was to conduct a comprehensive life cycle assessment (LCA), water footprint and cumulative energy demand (CED) of biodiesel production from Jatropha curcas L. (JC) seeds oil in Pakistan. A cradle-to-gate LCA approach was applied for 400 liter (L) JC biodiesel produced in Pakistan. JC biodiesel production chain was divided into three stages i.e., 1). cultivation of JC crop 2). crude oil extraction from JC seeds and 3). crude oil conversion to biodiesel. Primary data for all the stages were acquired through questionnaire surveys, field visits and measurements in the field. Potential environmental impacts were calculated in SimaPro v.9.2 software using Eco-indicator 99 methodology. Results showed that crude oil extraction stage accounted for highest emissions (77%) to the overall environmental impact categories evaluated, followed by oil conversion stage (21%) and JC cultivation stage (02%), respectively. The three stages of JC biodiesel production chain are major contributor to ecotoxicity with a contribution of 57% to this impact category. Higher contribution to ecotoxicity was due to agrochemicals used in the JC cultivation. Similarly, fossil fuels impact category was responsible for 38% of overall environmental impacts. In addition, water footprint of JC biodiesel production chain was 2632.54 m3/reference unit. Cumulative energy required for 400L JC biodiesel production chain was 46745.70 MJ in Pakistan. Fossil diesel consumption, synthetic fertilizers use and purchased electricity were major hotspot sources to environmental burdens caused by JC biodiesel production in Pakistan. By performing sensitivity analysis at 20% reduction of the baseline values of fossil diesel used, synthetic fertilizers and purchased electricity, a marked decrease in environmental footprint was observed. It is highly recommended that use of renewable energy instead of fossil energy would provide environmental benefits such as lower greenhouse gases and other toxic emissions as compared to conventional petroleum fuels. It is also recommended that JC as a biofuel plant, has been reported to have many desired characteristics such as quick growth, easy cultivation, drought resistance, pest and insect resistance, and mainly great oil content in JC seeds (27–40%). Therefore, JC plant is highly recommended to Billion Tree Afforestation Project (BTAP) for plantation on wasteland because it has multipurpose benefits.
This study was carried out to produce low-emitting biomass pellets biofuel from selected forest trees such as (Cedrus deodara and Pinus wallichiana) and agricultural crop residues such as (Zea mays and Triticum aestivum) in Gilgit-Baltistan, Pakistan using indigenously developed technology called pelletizer machine. Characterization, environmental life cycle impact assessment, and cumulative energy demand of biomass pellets biofuel produced from selected agriculture crops and forest tree residues were conducted. The primary data for biomass pellets production was collected by visiting various wood processing factories, sawmills, and agricultural crop fields in the study area. Biomass pellets are a type of biofuel that is often made by compressing sawdust and crushing biomass material into a powdery form. The particles are agglomerated as the raw material is extensively compressed and pelletized. Biomass pellets have lower moisture content, often less than 12%. Physically, the produced pellets were characterized to determine moisture content, pellet dimensions, bulk density, higher heating value, ash content, lower heating value, and element analysis. A functional unit of one kilogram (kg) biomass pellets production was followed in this study.The life cycle impact assessment of one kg biomass pellets biofuel produced from selected agro-forest species revealed environmental impact categories such as acidification (0.006 kg SO2 eq/kg pellets), abiotic depletion (0.018 kg Sb eq/kg pellets), marine aquatic ecotoxicity (417.803 kg 1,4-DB eq/kg pellets), human toxicity (1.107 kg 1,4-DB eq/kg pellets), freshwater aquatic ecotoxicity (0.191 kg 1,4-DB eq/kg pellets), eutrophication (0.001 kg PO4 eq/kg pellets), global warming (0.802 kg CO2 eq/kg pellets), and terrestrial ecotoxicity (0.008 kg 1,4-DB eq/kg pellets). Fossil fuel consumption was the hotspot source to all environmental impacts investigated. To measure the cumulative energy demand of biomass pellets made from different agroforestry species leftovers showed that the maximum cumulative energy was from wheat straw pellets (13.737 MJ), followed by corncob pellets (11.754 MJ), deodar sawdust pellets (10.905 MJ) and blue pine sawdust pellets (10.877 MJ). Among the various production activities, collection and transportation of primary raw material, crushing, screening, adding adhesives, pelletizing, cooling, final screening, and packing have the maximum contribution to the water scarcity index, followed by lubricating oil (0.00147m3). In contrast, the minimum contribution to water footprint was from electricity (0.00008m3) and wheat starch (0.00005m3). The highest contribution to the ecological footprint impact categories such as carbon dioxide, nuclear, and land occupation was lubricating oil and less contribution of wheat starch and electricity for manufacturing one kg pellets biofuel. It is concluded that physico-mechanical and combustion properties of the biomass pellets biofuel developed in the present study were following the Italian recommended standards. Therefore, it is strongly recommended that the Government of Pakistan should introduce the renewable biomass pellets industry in the country to reduce dependency on fossil fuels for cooking and heating purposes.
Life cycle assessment was carried out for a conventional wooden furniture set produced in Mardan division of the Khyber Pakhtunkhwa province of Pakistan during 2018-19. Primary data regarding inputs and outputs were collected through questionnaire surveys from 100 conventional wooden furniture set manufacturers, 50 in district Mardan and 50 in district Swabi. In the present study, cradle-to-gate life cycle assessment approach was applied for a functional unit of one conventional wooden furniture set. Production weighted average data were modelled in the environmental impacts modelling software i.e., SimaPro v.8.5. The results showed that textile used in sofa set, wood preservative for polishing and preventing insects attack and petrol used in generator had the highest contribution to all the environmental impact categories evaluated. Total cumulative energy demand for wooden furniture set manufactured was 30,005 MJ with most of the energy acquired from non-renewable fossil fuel resources.
The present paper deals with the estimation of the shape parameter α of Generalized Exponential GE (α, λ) distribution when the scale parameter λ is known, by using preliminary test single stage shrinkage (SSS) estimator when a prior knowledge available about the shape parameter as initial value due past experiences as well as optimal region R for accepting this prior knowledge.The Expressions for the Bias [B (.)], Mean Squared Error [MSE] and Relative Efficiency [R.Eff (.)] for the proposed estimator is derived.Numerical results about conduct of the considered estimator are discussed include study the mentioned expressions. The numerical results exhibit and put it in tables.Comparisons between the proposed estimator withe classical estimator as well as with some earlier studies were made to show the effect and usefulness of the considered estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.