Purpose: Patients with luminal breast cancer (LBC) often become endocrine resistant over time. We investigated the molecular changes associated with acquired hormonoresistances in patient-derived xenografts of LBC. Experimental Design: Two LBC xenografts (HBCx22 and HBCx34) were treated with different endocrine treatments (ET) to obtain xenografts with acquired resistances to tamoxifen (TamR) and ovariectomy (OvaR). PI3K pathway activation was analyzed by Western blot analysis and IHC and responses to ET combined to everolimus were investigated in vivo. Gene expression analyses were performed by RT-PCR and Affymetrix arrays. Results: HBCx22 TamR xenograft was cross-resistant to several hormonotherapies, whereas HBCx22 OvaR and HBCx34 TamR exhibited a treatment-specific resistance profile. PI3K pathway was similarly activated in parental and resistant xenografts but the addition of everolimus did not restore the response to tamoxifen in TamR xenografts. In contrast, the combination of fulvestrant and everolimus induced tumor regression in vivo in HBCx34 TamR, where we found a cross-talk between the estrogen receptor (ER) and PI3K pathways. Expression of several ER-controlled genes and ER coregulators was significantly changed in both TamR and OvaR tumors, indicating impaired ER transcriptional activity. Expression changes associated with hormonoresistance were both tumor and treatment specific and were enriched for genes involved in cell growth, cell death, and cell survival. Conclusions: PDX models of LBC with acquired resistance to endocrine therapies show a great diversity of resistance phenotype, associated with specific deregulations of ER-mediated gene transcription. These models offer a tool for developing anticancer therapies and to investigate the dynamics of resistance emerging during pharmacologic interventions. Clin Cancer Res; 20(16); 4314–25. ©2014 AACR.
Background: Epigenetic deregulation is considered as a new hallmark of cancer. The long non-coding RNA MALAT1 has been implicated in several cancers; however, its role in breast cancer is still little known.
Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers.Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response.In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT.
The receptor tyrosine kinase RET is implicated in the progression of luminal breast cancers (BC) but its role in estrogen receptor (ER) negative tumors is unknown. Here we investigated the expression of RET in breast cancer patients tumors and patient-derived xenografts (PDX) and evaluated the therapeutic potential of Vandetanib, a tyrosin kinase inhibitor with strong activity against RET, EGFR and VEGFR2, in ER negative breast cancer PDX. The RT-PCR analysis of RET expression in breast tumors of 446 patients and 57 PDX, showed elevated levels of RET in ER1 and HER21 subtypes and in a small subgroup of triple-negative breast cancers (TNBC). The activity of Vandetanib was tested in vivo in three PDX models of TNBC and one model of HER21 BC with different expression levels of RET and EGFR. Vandetanib induced tumor regression in PDX models with high expression of RET or EGFR. The effect was associated with inhibition of RET/EGFR phosphorylation and MAP kinase pathway and increased necrosis. In a PDX model with no expression of RET nor EGFR, Vandetanib slowed tumor growth without inducing tumor regression. In addition, treatment by Vandetanib decreased expression of murine Vegf receptors and the endothelial marker Cd31 in the four PDX models tested, suggesting inhibition of tumor vascularization. In summary, these preclinical results suggest that Vandetanib treatment could be useful for patients with ER negative breast cancers overexpressing Vandetanib's main targets.Breast cancers are heterogeneous, with a multitude of molecular alterations supporting their malignant progression. RET overexpression was found in 33% of ER1 tumors and 10% ER-tumors. 6 In addition, it has been shown that anti-RET therapies might be used in ER1 tumors to potentiate the effect of endocrine treatments in preclinical models. 7,8 In another study performed on 108 breast cancer patients, expression of RET was found in high percentages in HER21, triple-negative and ER positive tumors. 9 Therefore, RET seems to be a promising therapeutic target in breast cancer, irrespectively of molecular subtype. If RET has been mainly investigated in luminal breast cancer, no preclinical evidence exists that it is a relevant target in the subset of ER negative tumors overexpressing RET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.