PurposeCorrect and well-planned maintenance based on modern global methods directly affects efficiency, quality, direct production costs, reliability and profitability. The selection of an optimal policy for maintenance can be a good solution for industrial units. In fact, by managing constraints such as costs, working hours and human workforce causing sudden equipment failure, production and performance can increase.Design/methodology/approachTherefore, in this research a model was presented to select the best maintenance strategy at Kaghaz Kar Kasra Co of Iran. In this study, it was tried to integrate the two techniques of goal programming and the technique for order of preference by similarity to ideal solution (TOPSIS) to prioritize maintenance strategies. First, all factors affecting maintenance were identified, and based on the Best Worst Method (BWM) the degree of their importance was determined.FindingsAfter the evaluation, only 14 criteria in the 4 dimensions of cost, added value, safety and feasibility were selected. The highest points were given to the criteria of equipment cost and depreciation, equipment and personnel performance, equipment installation time and technical feasibility, respectively. In the next stage, using the TOPSIS method the item of maintenance strategy was ranked, and the 3 strategies of preventive maintenance (PM), predictive maintenance (PDM) and corrective maintenance (CM) were chosen. Modeling was performed utilizing a goal programming approach to select the optimal maintenance strategy for 13 devices. All the technical specifications, cost limits and the device time were extracted. After the model was finished and solved the best item for each device was specified.Originality/value1. Developing a goal programming model and decision-making dashboard. 2. Identifying the criteria and factors affecting the selection of the maintenance strategy for paper production Industry
Paper aims: The main objective of the research is to present a combination of fuzzy decision-making techniques to measure the performance of preventive maintenance systems. Originality: This research is a timely response to studying the prominent role of preventive maintenance performance in reducing cost, profitability, and overall organization's output. Research method: This study considers the application of "fuzzy DEMATEL" and ANP techniques for measuring maintenance performance and determining the causal relationships between the criteria and sub-criteria. Main findings: It is conjectured that functional and technical criteria, along that with individual and the environmental are of great importance. Among the sub-criteria, employee satisfaction, growth and learning, availability of machinery and equipment, quality of maintenance by the skilled and highly-trained workforce, deem to be the most important ones. Implications for theory and practice: The application of the decision techniques and the proposed measurement model for continuous improvement and promotion of maintenance performance.
This paper presents a multi-objective mathematical model which aims to optimize and harmonize a supply chain to reduce costs, improve quality, and achieve a competitive advantage and position using meta-heuristic algorithms. The purpose of optimization in this field is to increase quality and customer satisfaction and reduce production time and related prices. The present research simultaneously optimized the supply chain in the multi-product and multi-period modes. The presented mathematical model was firstly validated. The algorithm's parameters are then adjusted to solve the model with the multi-objective simulated annealing (MOSA) algorithm. To validate the designed algorithm's performance, we solve some examples with General Algebraic Modeling System (GAMS). The MOSA algorithm has achieved an average error of %0.3, %1.7, and %0.7 for the first, second, and third objective functions, respectively, in average less than 1 minute. The average time to solve was 1847 seconds for the GAMS software; however, the GAMS couldn't reach an optimal solution for the large problem in a reasonable computational time. The designed algorithm's average error was less than 2% for each of the three objectives under study. These show the effectiveness of the MOSA algorithm in solving the problem introduced in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.