Abstract. The plant stress and plant vigour hypotheses are competing paradigms pertaining to the preference and performance of herbivorous insects on their host plants. Tests of these hypotheses ideally require detailed information on aspects of soil nutrition, foliar nutrient levels and parameters of herbivore fitness, but such studies are uncommon. These hypotheses were tested using the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), reared on its host plant, Brassica napus (L.), grown in an experimental system of five nutrient regimes. Different levels of fertilizer treatments significantly affected the nutrient content of B. napus foliage and this in turn affected the preference and performance of P. xylostella. Ovipositing females discriminated among host plants grown in soils subjected to different fertilizer treatments and selected plants on which pre-imaginal survival was highest, development fastest and longevity of the next generation of adults the longest, even when food was scarce. Plants subjected to herbivory by P. xylostella responded by producing elevated levels of some nutrients (e.g., sulphur), but other nutrient levels declined in infested leaves (e.g., nitrogen). Regardless of the rate of fertilizer application, plants compensated for herbivory by increasing root mass compared to un-infested control plants; plants grown in soils receiving the optimum quantity of fertilizer developed the most robust root systems when infested. The plant stress and the plant vigour hypotheses are likely to be at the opposite ends of a continuum of responses between insects and their host plants. Our investigations indicate a complex set of interactions involving both bottom-up and top-down effects, which interact to affect host plant quality, oviposition site selection by female herbivores and the fitness of their offspring.
Insecticidal seed treatments are used commonly throughout the Northern Great Plains of North America to systemically protect seedlings of canola (Brassica napus L. and Brassica rapa L.) from attack by the flea beetles Phyllotreta cruciferae (Goeze) and Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae). Here, we investigated differential responses by the two flea beetle species to the neonicotinoid seed treatments thiamethoxam (Helix and Helix XTra) and clothianidin (Prosper 400) in greenhouse experiments. P. cruciferae experienced higher mortality and fed less when exposed to these compounds than did P. striolata. Beetles of the overwintered and the summer generations responded differently when feeding on seedlings that developed with insecticidal seed treatments, with mortality higher for P. cruciferae in May than in August. When the two flea beetle species were held together at equal densities and allowed to feed on seedlings affected by the seed treatments, mortality of P. cruciferae significantly exceeded that of P. striolata. Differences in efficacies of these compounds for these beetles have ramifications for management strategies in regions where these insects occur sympatrically. Competitive release of P. striolata was previously reported to occur when P. cruciferae was excluded from brassicaceous crops; consequently, the consistent use of these seed treatments over millions of hectares of canola cropland may be a factor that contributes to a shift in prevalence of flea beetle pest species from P. cruciferae toward P. striolata.
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.