This paper presents the comparative analysis of MHD boundary layer fluid flow around a linearly stretching surface in the presence of radiative heat flux, heat generation/absorption, thermophoresis velocity, and chemical reaction effects in a permeable surface. The governing equations are highly nonlinear PDEs which are converted into coupled ODEs with the help of dimensionless variables and solved by using semianalytical techniques. The numerical and graphical outcomes are observed and presented via tables and graphs. Also, the Nusselt and Sherwood numbers and skin friction coefficient are illustrated by tables. On observation of heat and mass transfer, it was noticed that Maxwell fluid dominates the other fluids such as Newtonian, Williamson, and Casson fluid due to high rate of thermal conductivity, and hence, Maxwell fluid has better tendency for heat and mass transfer than other Newtonian and non-Newtonian fluids.
Due to potential implications, boundary layer analysis of chemically reacting Carreau nanofluid has been carried out to examine flow properties of ferromagnetic fluid over a stretched sheet in the presence of magnetic dipole, for shear thinning and shear thickening fluids. Furthermore, the transportation of heat under thermal radiation, heat generation, the Brownian, and thermophoresis aspects has been evaluated. The dimensionless form of highly nonlinear coupled partial differential equations is obtained using suitable similarity transformations and then solved numerically by well-known bvp 4 c technique via MATLAB based on the shooting method. The outcomes of physical quantities are presented through graphs and numerical benchmarks. Moreover, outcomes for skin fraction, Sherwood and Nusselt numbers for velocity, concentration, and temperature are also estimated in this study. The present study reveals that the concentration and thermal boundary layer thicknesses were higher for shear thinning n < 1 fluid when compared with shear thickening n > 1 fluids, but reverse effects are to be observed for momentum boundary layer thickness.
This article addresses the numerical exploration of steady and 2D flow of MHD Carreau nanofluid filled with motile microorganisms over three different geometries, i.e., plate, wedge, and stagnation point of a flat plate. The influence of magnetic field, viscous dissipation, thermophoresis, and Brownian motion is considered for both cases, i.e., shear thinning and shear thickening. A set of relevant similarity transformations are utilized to obtain dimensionless form of governing coupled nonlinear partial differential equations (PDEs). The transformed system of ordinary differential equations (ODEs) is then numerically solved by bvp4c via MATLAB based on shooting technique and Runge–Kutta–Fehlberg (RKF) scheme via MAPLE. Also, a numerical analysis has been made for skin friction factor, heat, and mass transfer rates. Results elucidate that all the profiles except velocity show decreasing behavior for higher values of magnetic field parameter. Among all three flow geometries for both shear thinning and shear thickening cases, the flow over a plate has lesser skin friction factor. The nanoparticle concentration and density of motile microorganism decrease in both the shear thinning and shear thickening cases, for increasing values of Brownian motion (Nb), but reverse trend is observed for rising values of thermophoresis parameter (Nt). Furthermore, it is observed that, as we increase the values of suction/injection parameter (S), the velocity of fluid increases but decreases the fluid temperature, concentration of mass and density of motile organisms over a plate, wedge, and stagnation point of a flat plate. Also, we observed that shear thinning nanofluid has higher rate of heat, mass, and motile microorganisms mass transfers than shear thickening fluid. Both shear thinning and thickening nanofluid have a low rate of heat/mass and gyrotactic microorganisms mass transfer over plate among wedge and stagnation point flow.
In this research article, we have investigated the unsteady MHD nanofluids flow problem around a permeable linearly stretching sheet under the influence of thermal radiation and viscous dissipation. Transfer of mass and heat analysis is considered for various kinds of nano-particles such as [Formula: see text] , Cu, Ag and TiO2. Many research studies had been concluded that thermal conductivity of traditional fluid accelerates 15–40% as nano-particles are mixed in to a base fluid, this theory however depends upon the adding mechanism of the nano-particles. Although it depends upon volume fraction, agglomeration or size of nano-particles etc. But it can be concluded from this study, in a magnetic field environment not only the fluid flow is more consistent than regular fluid but also the rate of heat transfer increases. We have tabulated the results of the four different types of nanofluid and graphically presented the behavior of [Formula: see text] and Cu nanofluids. These distinct MHD nanofluids are used to explore the parametric features of heat and mass transfer phenomena along a permeable stretching sheet. The impacts of various physical parameters and physical quantities are analyzed. It is observed that from this study that the heat transfers rate of Cu nanofluid is higher than [Formula: see text] nanofluid. The coupled non-linear equations are solved by semi-analytical technique i.e Differential Transformation Method (DTM) along with Pade-approximation and found to be in well agreement with already reported work in literature. The graphical illustration and tabular results represent the physical importance of the work. It was observed and concluded that the temperature profiles in case of Cu nanofluid presents significantly high as compared with [Formula: see text] nanofluid. Also, the thicknesses of velocity, thermal and concentration profile decreases by increasing suction/injection and unsteady parameter. These parameters used to control the flow rate.
This research work interprets the influences of magnetic dipole over a radiative Eyring–Powell fluid flow past a stretching sheet while considering the impacts of viscous and ohmic dissipation that produce a quite illustrious effect due to the generated magnetic dipole. This whole analysis is characterized by the effects of steady, laminar, and incompressible flow. The highly nonlinear and coupled partial differential equations (PDEs) are remodeled into a system of nonlinear ordinary differential equations (ODEs) by utilizing reliable and nondimensional parameters leading to the momentum, thermal, and concentration equations, that are computationally solved using b v p 4 c on MATLAB, and “dsolve” command on MAPLE software, in the companionship of boundary conditions. The physical constraints such as viscous and ohmic dissipation and many other sundry parametric effects are sketched with their ultimate effects on fluid flow. For the sustenance of this research with the prior work and in collaboration with the below mentioned literature review, a comprehensive differentiation is given, which defines the sustainability of the current work. The Buongiorno nanoliquid model elaborates the thermophoresis and Brownian features that are deliberately scrutinized within the influence of activation energy. Also, the skin friction coefficient, Nusselt number, and Sherwood number are illustrated in tables. The skin friction coefficient decreases with a rise in the ferromagnetic interaction parameter as well as the Hartmann number, whereas the Nusselt number and Sherwood number show variation for varying parameters. It can be observed that Eyring–Powell fluid intensifies the rate of heat and mass transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.