We study the evolution of a social network with friendly/enmity connections into a balanced state by introducing a dynamical model with an intrinsic randomness, similar to Glauber dynamics in statistical mechanics. We include the possibility of the tension promotion as well as the tension reduction in our model. Such a more realistic situation enables the system to escape from local minima in its energy landscape and thus to exit out of frozen imbalanced states, which are unwanted outcomes observed in previous models. On the other hand, in finite networks the dynamics takes the system into a balanced phase, if the randomness is lower than a critical value. For large networks, we also find a sharp phase transition at the initial positive link density of ρ * 0 = 1/2, where the system transitions from a bipolar state into a paradise. This modifies the gradual phase transition at a nontrivial value of ρ * 0 ≃ 0.65, observed in recent studies.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.