Summary1. Ecological stoichiometry expresses ecological interactions as the balance between multiple elements. It relates the ecological function of organisms to their elemental composition, or their organismal stoichiometry. Organismal stoichiometry is thought to reflect elemental investments in life history and morphology acting in concert with variability in abiotic or environmental conditions, but the relative contribution of these factors to natural variability in organismal stoichiometry is poorly understood. 2. We assessed the relative contribution of stream identity, predation, body size and sex to the organismal stoichiometry of guppies (Poecilia reticulata) in six streams in Trinidad. In this system, guppy life-history phenotype evolves in response to predation. Guppies adapted to highpredation (HP) pressure grow faster, mature earlier, produce fewer and smaller offspring and eat a higher-quality diet than guppies adapted to low-predation (LP) pressure. This pattern of lifehistory evolution is repeated in many rivers encompassing a wide range of abiotic conditions. 3. Organismal stoichiometry of guppies was widely variable, spanning up to $70% of the range of variability reported across freshwater fish taxa. Streams from where guppies were sampled were the most important predictor of organismal stoichiometry. In many cases, guppy populations from sites within the same stream varied as much as from sites in different streams. 4. Surprisingly, predation regime was a minor predictor of % C, C : P and C : N in female guppies, despite its strong correlation with life-history phenotype and other organismal traits in this species. Body size and sex were not significant predictors of organismal stoichiometry. 5. Guppies from HP sites were more stoichiometrically balanced with their diets than guppies from LP sites. The latter appeared to be more vulnerable to phosphorus limitation than the former, suggesting that dietary specialization associated with guppy life-history phenotype may have stoichiometric consequences that can affect guppy physiology and nutrient recycling. 6. Our findings suggest that local environmental conditions are a stronger predictor of organismal stoichiometry than organismal traits. We recommend that future work should explicitly consider correlations between organismal traits and organismal stoichiometry in the context of environmental heterogeneity.
Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.