The mechanism of the antiulcer effect of omeprazole was studied placing emphasis on its role to block oxidative damage and apoptosis during ulceration. Dose-response studies on gastroprotection in stress and indomethacin-induced ulcer and inhibition of pylorus ligation-induced acid secretion indicate that omeprazole significantly blocks gastric lesions at lower dose (2.5 mg/kg) without inhibiting acid secretion, suggesting an independent mechanism for its antiulcer effect. Time course studies on gastroprotection and acid reduction also indicate that omeprazole almost completely blocks lesions at 1 h when acid inhibition is partial. The severity of lesions correlates well with the increased level of endogenous hydroxyl radical ( ⅐ OH), which when scavenged by dimethyl sulfoxide causes around 90% reduction of the lesions, indicating that ⅐ OH plays a major role in gastric damage. Omeprazole blocks stress-induced increased generation of ⅐ OH and associated lipid peroxidation and protein oxidation, indicating that its antioxidant role plays a major part in preventing oxidative damage. Omeprazole also prevents stress-induced DNA fragmentation, suggesting its antiapoptotic role to block cell death during ulceration. The oxidative damage of DNA by ⅐ OH generated in vitro is also protected by omeprazole or its analogue, lansoprazole. Lansoprazole when incubated in a ⅐ OH-generating system scavenges ⅐ OH to produce four oxidation products of which the major one in mass spectroscopy shows a molecular ion peak at m/z 385, which is 16 mass units higher than that of lansoprazole (m/z 369). The product shows no additional aromatic proton signal for aromatic hydroxylation in 1 H NMR. The product absorbing at 278 nm shows no alkaline shift for phenols, thereby excluding the formation of hydroxylansoprazole. The product is assigned to lansoprazole sulfone formed by the addition of one oxygen atom at the sulfur center following attack by the ⅐ OH. Thus, omeprazole plays a significant role in gastroprotection by acting as a potent antioxidant and antiapoptotic molecule.
The effect of cold-restraint stress on the antioxidant enzymes of the rat gastric mucosa was studied with a view to finding out their role in stress induced gastric ulceration. Histological examination revealed stress induced extensive damage of the surface epithelial cell with lesions extending up to submucosa in some cases. Stress causes time-dependent increase in histamine and pepsin content but decrease in acid content of the gastric fluid with the progress of ulceration (ulcer index) for two hours. The tissue lipid peroxidation was significantly increased as evidenced by accumulation of malondialdehyde. Since lipid peroxidation results from the generation of reactive oxygen species, stress effect was studied on some antioxidant enzymes such as superoxide dismutase, peroxidases and prostaglandin synthetase as a function of time. The time dependent increase in stress ulcer correlates well with the concomitant increase in superoxide dismutase activity and decrease in peroxidase and prostaglandin synthetase activity. This creates a favourable condition for accumulation of endogenous H2O2 and more reactive hydroxyl radical (OH.). Administration of antioxidants such as reduced glutathione or sodium benzoate prior to stress causes significant decrease in ulcer index and lipid peroxidation and protection of gastric peroxidase activity suggesting the involvement of reactive oxygen species in stress induced gastric ulceration. This is supported by the in vitro observation that OH. can also inactivate peroxidase and induce lipid peroxidation. As prostaglandin is known to offer cytoprotection, stress-induced loss of prostaglandin synthetase activity appears to aggravate the oxidative damage caused by reactive oxygen species.
The mechanism of the antiulcer effect of Neem leaf aqueous extract to block gastric lesions in rat has been studied with emphasis on acid secretion, oxidative damage and apoptosis. The extract dose-dependently inhibits gastric lesions induced by restraint-cold stress, indomethacin and ethanol. In stress ulcer model, it is more effective than ranitidine but less effective than omeprazole. It also dose-dependently blocks pylorus ligation and mercaptomethylimidazole-induced acid secretion. In the pylorus-ligation model, it is less effective than omeprazole but as effective as ranitidine. It inhibits H+-K+-ATPase activity in vitro in concentration-dependent manner to inhibit acid secretion. Oxidative membrane damage by hydroxyl radical (*OH) as measured by lipid peroxidation in stress ulcer is significantly blocked by leaf extract. Stress-induced apoptotic DNA fragmentation is also protected. The extract also prevents *OH-mediated mucosal DNA damage in vitro by scavenging the *OH. Neem leaf extract, thus, offers antiulcer activity by blocking acid secretion through inhibition of H+-K+-ATPase and by preventing oxidative damage and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.