This summary consists of an experience report about actions taken by biochemical monitors with pharmacy students. The reason of our work was the intention to both improve the process of teaching and also learning and invalidate the labels owned by biochemistry of hard and high-level-failure subject. The three actors: teachers, students and monitor could act on an integrated basis for the construction of an articulated p edagogical process between theory/practice and learning signification. Our main objective was to initiate the monitors in teaching practice effected through educational projects aimed at improving the teaching and learning of undergraduate courses and encouraging teacher training, involving teachers and students the guiding condition and monitors, respectively. T he methodology was applied in three stages: 1 ) preparation of teaching materials ; 2nd) application in class and 3rd) students rating of the methodology applied by monitors. The teaching materials presented discussed several biochemistry's topics and students had the opportunity to scaffold their own knowledge actively . Almost 90 % considered the tool applied as highly related to classes and 82% considered this way of learning more significant than dialogical lectures. The performance of the monitors , focused on students and their learning, was considered great by students who were more motivated, resulting in the excellent evaluation of the work (100% of acceptance ). The failure rate of the subject reduced in the four groups wherein the pedagogical materials were applied. It can demonstrate that both the mastery of scientific content and the pedagogical process involved during the teaching and learning moments are important.
Ionic liquids (ILs) are good electrical conductors and organic liquid compounds at room temperature, with potential applicability in water electrolysis for H2 generation. The objective of this work is to describe the synthesis, characterization and study of the feasibility of ionic liquid 1-methyl-3-(2,6-(S)-dimethyloct-2-ene)-imidazolium tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The synthesized MDI-BF4 was characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), mid-infrared spectroscopy with Fourier Transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). The yield of the synthesis were calculate by the TGA and DSC. From the results: The infrared spectroscopy identified the functional groups of the compound and the B-F bond at 1053 cm-1. The NMR 1H analyzed and compared with literature data confirms the structure of MDI-BF4. The yield of the synthesis of MDI-BF4 which was 88.84%. The current density achieved by MDI-BF4 in the voltammogram shows that the IL can conduct electrical current regardless the concentration of water, indicating that the MDI-BF4 is a potential electrolyte for hydrogen production from water electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.