Most of the energy consumed by the residential and commercial buildings in the U.S. is dedicated to space cooling and heating systems, according to the U.S. Energy Information Administration. Therefore, the need for better operation mechanisms of those existing systems become more crucial. The most vital factor for that is the need for accurate models that can accurately predict the system component performance. Therefore, this paper’s primary goal is to develop a new accurate data-driven modeling and optimization technique that can accurately predict the performance of the selected system components. Several data-enabled modeling techniques such as artificial neural networks (ANN), support vector machine (SVM), and aggregated bootstrapping (BSA) are investigated, and model improvements through model structure optimization proposed. The optimization algorithm will determine the optimal model structures and automate the process of the parametric study. The optimization problem is solved using a genetic algorithm (GA) to reduce the error between the simulated and actual data for the testing period. The models predicted the performance of the chilled water variable air volume (VAV) system’s main components of cooling coil and fan power as a function of multiple inputs. Additionally, the packaged DX system compressor modeled, and the compressor power was predicted. The testing results held a low coefficient of variation (CV%) values of 1.22% for the cooling coil, and for the fan model, it was found to be 9.04%. The testing results showed that the proposed modeling and optimization technique could accurately predict the system components’ performance.
in 2016, It was estimated that about 40% of total U.S. energy consumption was consumed by the residential and commercial sectors. According to EIA, in 2009, the energy consumption in U.S. homes was 48% which was down from 58% in 1993 Residential Energy Consumption Survey (RECS). The development of building energy savings methods and models becomes apparently more necessary for a sustainable future. The cooling coil is an essential component of HVAC systems. The accurate prediction of a cooling coil performance is important in many energy solution applications. This paper discusses the modeling methodologies of a chilled water cooling system using artificial neural networks. The objective of this research paper is to properly develop the model to predict the cooling coil performance accurately. This study utilized data from an existing building located in North Carolina, USA. Data such as chilled water supply temperature, airflow rate, mixture and supply air temperatures and humidity ratios, etc., are collected over the course of three months for developing and testing the model. Multiple neural network structures are tested along with multiple input and output delays to determine the one yielding the optimal results. Moreover, an optimization technique is developed to select premier model that can predict results accurately validated by the actual data. The observations from this research validates the use of artificial neural network model as an accurate tool for predicting the performance of a chilled water air handling unit.
Accurate modeling of total building energy is now vital to reduce energy consumption. This is especially true for buildings since they are considered as the largest energy consumer in the United States. This paper investigates modeling methods for building energy-systems using non-linear auto-regression artificial neural networks. The proposed model can forecast the whole building energy consumptions given the four input variables: Dry-bulb and wet-bulb outdoor air temperatures, hours of day and type of days. In addition, the paper presents optimization process that uses genetic algorithm to determine the best model structure by minimizing the model errors. Statistical indexes such as the root mean-square error RMSE and the coefficient of variance CV of RMSE are used to measure the model accuracy. The data was collected from existing buildings and from simulations. The collected data was used to test and train the proposed models as well as in the optimization process. Various neural network structures were tested using different inputs and feedback delays. The results show that the proposed model can accurately predict the energy consumptions. The CV values were within a range of 1.7 and 7.7%. It also proves that the model can be used for saving estimation applications and different energy efficiency.
According to EIA, the Heating Ventilation and Air Conditioning (HAVC) systems account for about 25% of the U.S.’s total commercial building’s energy use. Therefore, advanced modeling and optimization methods of the system components and operation offer great ways to reduce energy consumption in all types of buildings and mainly commercial buildings. This research introduced an innovative integrated two-level optimization technique for the HVAC system to reduce the total energy consumption while improving the indoor thermal comfort level. The process uses actual system performance data collected for the building automation systems (BAS) to create accurate component modeling and optimization process as the first level of optimization (MLO). Artificial neural networks were chosen to be the tool used to serve the process of modeling. The second optimization level utilizes the whole system-level optimization technique (SLO) using a genetic algorithm (G.A.). The proposed two-levels optimization technique will optimize the system setpoints, the supply air temperature, duct static pressure, minimum zone air flowrates, and minimum outdoor air ventilation rate. The proposed technique has contributed to the field of modeling and optimization of HVAC systems through several new contributions. (1) Implementing the demand control methodology with the optimization process to modify the electricity consumption power profile when the demand signal is received. (2) Implement the occupancy schedule inputs into the optimization process to adjust the ventilation airflow rates accordingly. (3) Implement the real-time zone occupancy sensor readings and adjust the zone’s ventilation flowrates and minimum flowrates. (4) Lastly, implementing the method of zone minimum air flowrates setpoint rests to reduce reheat requirements. The proposed optimization process was tested and validated, resulting in savings in the total energy consumed by the chilled water VAV system by 13.4%, 22.4 %, followed by 31% for July, February, and October, respectively.
Different types of air-to-air energy recovery technologies such as coil loops, heat pipes, sensible wheels, and total energy wheels are frequently incorporated in HVAC systems in an attempt to reduce energy consumption. This study examines the impact of various types of energy recovery technologies and capacity control strategies on a building's cooling, heating, and fan energy consumption across different climate zones, including Fargo, ND;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.