Allantoin (ALL) is a phytochemical possessing an impressive array of biological activities. Nonetheless, developing a nanostructured delivery system targeted to augment the gastric antiulcerogenic activity of ALL has not been so far investigated. Consequently, in this survey, ALL-loaded chitosan/sodium tripolyphosphate nanoparticles (ALL-loaded CS/STPP NPs) were prepared by ionotropic gelation technique and thoroughly characterized. A full 24 factorial design was adopted using four independently controlled parameters (ICPs). Comprehensive characterization, in vitro evaluations as well as antiulcerogenic activity study against ethanol-induced gastric ulcer in rats of the optimized NPs formula were conducted. The optimized NPs formula, (CS (1.5% w/v), STPP (0.3% w/v), CS:STPP volume ratio (5:1), ALL amount (13 mg)), was the most convenient one with drug content of 6.26 mg, drug entrapment efficiency % of 48.12%, particle size of 508.3 nm, polydispersity index 0.29 and ζ-potential of + 35.70 mV. It displayed a sustained in vitro release profile and mucoadhesive strength of 45.55%. ALL-loaded CS/STPP NPs (F-9) provoked remarkable antiulcerogenic activity against ethanol-induced gastric ulceration in rats, which was accentuated by histopathological, immunohistochemical (IHC) and biochemical studies. In conclusion, the prepared ALL-loaded CS/STPP NPs could be presented to the phytomedicine field as an auspicious oral delivery system for gastric ulceration management.
The current study investigates the anti-inflammatory and hepatoprotective effects of selenium (Se) formulated as nanoparticles (SeNPs) and in combination with quercetin (QCT) against thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) in rats. Seventy-two male Sprague-Dawley rats were divided into six groups (n = 12). Three control groups; normal, SeNPs; group received SeNPs only and HCC; group received TAA. In addition, three preventive groups; SeNPs + TAA, QCT + TAA, and QCT + SeNPs + TAA. Induction of HCC was detected histopathologically and by the raise of the serum level of alpha-fetoprotein (AFP). Oxidative stress was evaluated by the hepatic levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and malondialdehyde (MDA) spectrophotometrically. The oncogenic pathway of p53/β-catenin/cyclin D1 was assessed by immunohistochemistry. The inflammatory markers; interleukin-33 (IL-33), IL-6, and IL-1β were assessed by enzyme-linked immune sorbent assay. SeNPs prevented the elevation of serum AFP and hepatic IL-33, IL-1β, and IL-6 in comparison to HCC or QCT + TAA groups.SeNPs + TAA exhibited a lower positive hepatic staining of p53, β-catenin, and cyclin D1 in comparison to HCC or QCT + TAA groups. Moreover, SeNPs improved the overall oxidative balance indicated by low hepatic MDA and enhanced GSH and GPx when compared to HCC or QCT + TAA groups. SeNPs alone and in combination with QCT were found to suppress the progression of HCC in rats via the enhancement of the oxidative stress and then inflammatory status and the prevention of the deregulation of the oncogenic axis pathway of p53/β-catenin/cyclin D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.