The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a life span and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland, we have discovered that Rac1 acts as a nexus to control cell turnover. Postlactational tissue regression is characterised by the death of milk secreting alveoli, but the process is reversible within the first 48 h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli, but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to nonautonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the alveoli failed to recommence lactation upon resuckling.
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various cell mouse types. Next we compared the functional capabilities of these murine isoforms compared to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found strong evidence for functional redundancy without complete functional equivalence with the Tbx6 subfamily member Tbx16, known to be absent from eutherians and other mammals. Finally, we analysed the ability of Eomesa to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left/right asymmetry. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to the expanded complement of T-box factors in teleosts. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.Author summaryRecent studies provide evidence for both shared and unique molecular pathways controlling early development in different vertebrate organisms. The transcription factor Eomesodermin plays essential roles during mammalian development and has potent functional capabilities in zebrafish embryos yet is seemingly dispensable for viability. Here we compared functional contributions of the predominant zebrafish Eomesodermin homologue - Eomesa - with multiple isoforms of mouse Eomesodermin. We found them to be functionally indistinguishable in the early embryo. Surprisingly, a distant relative of Eomesodermin in the zebrafish embryo – Tbx16 – which is absent in mammals shows a degree of functional overlap with Eomesodermin, underscoring the different evolutionary requirements for Eomesodermin in teleosts and mammals. Finally, we demonstrate that Eomesodermin differentially regulates the transcriptional cofactor vgll4l, which plays key roles in formation of the zebrafish left/right organiser, at different stages of development. Thus, our work demonstrates the molecular function of Eomesodermin is likely to be conserved throughout vertebrate evolution despite differences in mutant phenotypes, and reveals regulatory mechanisms controlling left/right asymmetric patterning.
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a lifespan and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland we have discovered that Rac1 acts as a nexus to control cell turnover. Post-lactational tissue regression is characterized by the death of milk secreting alveoli, but the process is reversible within the first 48h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to non-autonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the regenerated alveoli failed to recommence lactation upon re-suckling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.