To eliminate some of the ambiguity in describing foot shape, we developed threedimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n ¼ 65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. ß
This biomechanical study investigated the functional role of the posterior tibial tendon (PTT) in acquired flatfoot mechanics. Acquired flatfoot deformity has been attributed to PTT dysfunction; however, the progression from acute dysfunction to end-stage deformity has not been fully demonstrated. Eight human cadaver lower leg and foot specimens were used in two phases of experimental testing. In Phase 1, intact (normal) specimens were loaded to simulate (a) heel strike, (b) stance, and (c) heel rise both with and without PTT function. Then, each specimen was subjected to a procedure designed to create a simulated flatfoot deformity. The resulting flattened feet were used in Phase 2 to examine the effect of restoring PTT function to a flatfoot model. During both phases of testing, the 3-D kinematic orientation of the hindfoot complex was recorded. Small but statistically significant changes in the angular orientation of the hindfoot complex were observed, during both Phase 1 and 2 testing, when comparing the effects of a functional and dysfunctional PTT. The greatest angular changes were recorded during heel rise. For the normal foot, the small changes observed in the orientation of the hindfoot complex following release of the PTT load suggest that the intact osteo-ligamentous structure of the hindfoot is initially able to maintain normal alignment following acute PTT dysfunction. Once the soft tissues have been weakened, as in our flatfoot model, the PTT had little effect in overcoming the soft tissue laxity to correct the position of the foot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.