The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.
BACKGROUND AND PURPOSEPrevious work in our laboratory showed opioid agents inhibit cytokine expression in astrocytes. Recently, Watkins and colleagues hypothesized that opioid agonists activate toll-like receptor 4 (TLR4) signalling, which leads to neuroinflammation. To test this hypothesis, we characterized LPS and opioid effects on TLR4 signalling in reporter cells. EXPERIMENTAL APPROACHNF-kB reporter cells expressing high levels of TLR4 were used to compare LPS and opioid effects on NF-kB activation, a pathway activated by TLR4 stimulation. KEY RESULTS LPS increased TLR4 signalling in a concentration-dependent manner and was antagonized by LPS antagonist (LPS-RS, from Rhodobacter sphaeroides).A concentration ratio analysis showed that LPS-RS was a competitive antagonist. The opioid agonists, morphine and fentanyl, produced minor activation of TLR4 signalling when given alone. When tested following LPS stimulation, opioid agonists inhibited NF-kB activation but this inhibition was not blocked by the general opioid antagonist, naloxone, nor by the selective m opioid receptor antagonist, b-FNA. Indeed, both naloxone and b-FNA also inhibited NF-kB activation in reporter cells. Further examination of fentanyl and b-FNA effects revealed that both opioid agents inhibited LPS signalling in a non-competitive fashion. CONCLUSIONS AND IMPLICATIONSThese results show that LPS-RS is a competitive antagonist at the TLR4 complex, and that both opioid agonists and antagonists inhibit LPS signalling in a non-competitive fashion through a non-GPCR, opioid site(s) in the TLR4 signalling pathway. If confirmed, existing opioid agents or other drug molecules more selective at this novel site may provide a new therapeutic approach to the treatment of neuroinflammation.
The v-abl protein of Abelson murine leukemia virus is a tyrosine-specific kinase. Its normal cellular homolog, murine c-abl, does not possess detectable tyrosine kinase activity in vitro. Previously, we have detected tyrosine kinase activity in vitro for an altered c-abl gene product (c-abl P210) in the K562 human chronic myelogenous leukemia cell line. The expression of this variant c-abl gene product correlates with chromosomal translocation and amplification of the c-abl gene in K562 cells. Like v-abl, c-abl P210 is a fusion protein containing non-abl sequences near the amino terminus of c-abl. We compared the in vitro tyrosine kinase activity of c-abl P210 with that of wild-type murine v-abl. The remarkable similarities of these two proteins with respect to cis-acting autophosphorylation, trans-acting phosphorylation of exogenous substrates, and kinase inhibition, using site-directed abl-specific antisera, suggested that c-abl P210 could function similarly to v-abl in vivo. In addition, c-abl P210 possessed an associated serine kinase activity in immunoprecipitates. The serine kinase activity was not inhibited by site-directed, abl-specific antisera that inhibit the tyrosine kinase activity, suggesting that the serine kinase activity is not an intrinsic property of c-abl P210. Thus, the activation of the c-abl gene in a human leukemia cell line may have functional consequences analogous to activation of the c-abl gene in Abelson murine leukemia virus.
Emerging evidence indicates that neuroinflammatory responses in astroglia, including chemokine expression, are altered by opioids. Astroglial chemokines, such as CXCL10, are instrumental in response to many neuropathological insults. Opioid mediated disruption of astroglial CXCL10 expression may be detrimental in opioid abusers or patients receiving acute opioid therapy. We have characterized the in vitro effects of opioids on CXCL10 protein expression in human astroglial (A172) cells. The proinflammatory cytokine, tumor necrosis factor (TNF)α induced CXCL10 expression in A172 cells. Using MG-132, helenalin and SN50 [inhibitors of the transcription factor, nuclear factor (NF)-κB], we determined that NF-κB activation is instrumental in TNFα induced CXCL10 expression in A172 astroglia. Morphine exposure during the 24 h TNFα stimulation period did not alter CXCL10 expression. However, fentanyl, a more potent mu opioid receptor (MOR) agonist, inhibited TNFα induced CXCL10 expression. Interestingly, neither the nonselective opioid receptor antagonist, naltrexone nor β-funaltrexamine (β-FNA), a highly selective MOR antagonist, blocked fentanyl mediated inhibition of TNFα induced CXCL10 expression. Rather, β-FNA dose dependently inhibited TNFα induced CXCL10 expression with a greater potency than that observed for fentanyl. Immunoblot analysis indicated that morphine, fentanyl and β-FNA each reduced TNFα induced nuclear translocation of NF-κB p65. These data show that β-FNA and fentanyl inhibit TNFα induced CXCL10 expression via a MOR independent mechanism. Data also suggest that inhibition of TNFα induced CXCL10 expression by fentanyl and β-FNA is not directly related to a reduction in NF-κB p65 nuclear translocation. Further investigation is necessary in order to fully elucidate the mechanism through which these two opioid compounds inhibit CXCL10 expression. Understanding the mechanism by which chemokine expression is suppressed, particularly by the opioid antagonist, β-FNA, may provide insights into the development of safe and effective treatments for neuroinflammation.
HIV encephalitis (HIVE), the pathologic correlate of HIV-associated dementia (HAD) is characterized by astrogliosis, cytokine/chemokine dysregulation and neuronal degeneration. Increasing evidence suggests that inflammation is actively involved in the pathogenesis of HAD. In fact, the severity of HAD/HIVE correlates more closely with the presence of activated glial cells than with the presence and amount of HIV-infected cells in the brain. Astrocytes, the most numerous cell type within the brain, provide an important reservoir for the generation of inflammatory mediators, including interferon-γ inducible peptide-10 (CXCL10), a neurotoxin and a chemoattractant, implicated in the pathophysiology of HAD. Additionally, the pro-inflammatory cytokines, IFN-γ and TNF-α, are also markedly increased in CNS tissues during HIV-1 infection. In the present study we hypothesized that the interplay of host cytokines and HIV-1 could lead to enhanced expression of the toxic chemokine, CXCL10. Our findings demonstrate a synergistic induction of CXCL10 mRNA and protein in human astrocytes exposed to HIV-1 and the proinflammatory cytokines. Signaling molecules, including JAK, STATs, MAPK (via activation of Erk1/2, AKT, and p38), and NF-κB were identified as instrumental in the synergistic induction of CXCL10. Understanding the mechanisms involved in HIV-1 and cytokine mediated up-regulation of CXCL10 could aid in the development of therapeutic modalities for HAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.