Lukács and András posed the problem of showing the existence of a set of n − 2 points in the interior of a convex n-gon so that the interior of every triangle determined by three vertices of the polygon contains a unique point of S. Such sets have been called pebble sets by De Loera, Peterson, and Su. We seek to characterize all such sets for any given convex polygon in the plane.We first consider a certain class of pebble sets, called peripheral because they consist of points that lie close to the boundary of the polygon. We characterize all peripheral pebble sets, and show that for regular polygons, these are the only ones. Though we demonstrate examples of polygons where there are other pebble sets, we nevertheless provide a characterization of the kinds of points that can be involved in non-peripheral pebble sets. We furthermore describe algorithms to find such points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.