Information on responses of weeds to various soil fertility levels is required to develop fertilizer management strategies as components of integrated weed management programs. A controlled environment study was conducted to determine shoot and root growth response of 23 agricultural weeds to N fertilizer applied at 0, 40, 80, 120, 180, or 240 mg kg−1 soil. Wheat and canola were included as control species. Shoot and root growth of all weeds increased with added N, but the magnitude of the response varied greatly among weed species. Many weeds exhibited similar or greater responses in shoot and root biomass to increasing amounts of soil N, compared with wheat or canola. With increasing amounts of N, 15 weed species showed a greater increase in shoot biomass, and 8 species showed a greater increase in root biomass, compared with wheat. Ten weed species exhibited increases in shoot biomass similar to that exhibited by canola, and five weed species showed greater increases in root biomass than did canola, as N dose was increased. All crop and weed species extracted > 80% of available N at low soil N levels. At the highest N dose, 17 of 23 weed species took up similar or greater amounts of soil N than did wheat, and 6 weed species took up N in amounts similar to that taken up by canola. These findings have significant implications as to how soil fertility affects crop–weed competition. The high responsiveness of many weed species to N may be a weakness to be exploited through development of fertilizer management methods that enhance crop competitiveness with weeds.
Information on nitrogen fertilizer effects on crop–weed competitive interactions might aid in developing improved weed management programs. A controlled environment study was conducted to examine the effect of three N rates on the competitive ability of four weed species grown with wheat. The four weed species were chosen to represent species that varied in their growth responsiveness to nitrogen (N): Persian darnel (low), Russian thistle (low), redroot pigweed (high), and wild oat (high). Wheat and each weed species were grown in a replacement series design at N rates of 60, 120, and 240 mg N kg−1soil. The competitive ability of the low N-responsive species, Persian darnel and Russian thistle, was not influenced by N rate, supporting our hypothesis that N rate would have little effect on the competitiveness of species responding minimally to N. Conversely, the competitiveness of the high N-responsive species redroot pigweed progressively improved as N rate increased. However, wild oat competitiveness was unaffected by N fertilizer rate. There is some evidence from this study to suggest that fertilizer management strategies that favor crops over weeds deserve greater attention when weed infestations consist of species known to be highly responsive to higher soil N levels. Information gained in this study will be used to advise farmers of the importance of strategic fertilizer management in terms of both weed management and crop yield.
In summer, 2011, we investigated suspected glyphosate-resistant (GR) kochia in three chem-fallow fields (designated F1, F2, F3, each farmed by a different grower) in southern Alberta. This study characterizes glyphosate resistance in those populations, based on data from dose–response experiments. In a greenhouse experiment, the three populations exhibited a resistance factor ranging from 4 to 6 based on shoot biomass response (GR50ratios), or 5 to 7 based on survival response (LD50ratios). Similar results were found in a field dose–response experiment at Lethbridge, AB, in spring 2012 using the F2 kochia population. In fall 2011, we surveyed 46 fields within a 20-km radius of the three chem-fallow fields for GR kochia. In the greenhouse, populations were screened with glyphosate at 900 g ae ha−1. Seven populations were confirmed as GR, the farthest site located about 13 km from the three originally confirmed populations. An additional GR population more than 100 km away was later confirmed. Populations were screened for acetolactate synthase (ALS)–inhibitor (thifensulfuron : tribenuron) and dicamba resistance in the greenhouse, with molecular characterization of ALS-inhibitor resistance in the F1, F2, and F3 populations. All GR populations were resistant to the ALS-inhibiting herbicide, but susceptible to dicamba. ALS-inhibitor resistance in kochia was conferred by Pro197, Asp376, or Trp574amino acid substitutions. Based upon a simple empirical model with a parameter for selection pressure, calculated from weed relative abundance and glyphosate efficacy, and a parameter for seedbank longevity, kochia, wild oat, and green foxtail were the top three weeds, respectively, predicted at risk of selection for glyphosate resistance in the semiarid Grassland region of the Canadian prairies; wild oat, green foxtail, and cleavers species were predicted at greatest risk in the subhumid Parkland region. This study confirms the first occurrence of a GR weed in western Canada. Future research on GR kochia will include monitoring, biology and ecology, fitness, mechanism of resistance, and best management practices.
Information on weed responses to soil fertility levels is needed to aid development of fertilizer management strategies as components of integrated weed management programs. A controlled environment study was conducted to determine shoot and root growth response of 22 agricultural weeds to fertilizer phosphorus (P) applied at 5, 10, 20, 40, or 60 mg kg−1 soil. An unfertilized control was included. Wheat and canola were included as control species. Shoot and root growth of all weeds increased with added P, but the magnitude of the response varied greatly among species. Many weeds exhibited similar or greater responses in shoot and root biomass to increasing amounts of soil P compared with wheat or canola. With increasing amounts of P, 17 weed species increased shoot biomass more than wheat, and 19 weed species increased shoot biomass more than canola. However, only 10 weed species exhibited greater increases in root biomass than canola, and no weed species increased root biomass more than wheat with added P. Canola was among species taking up the greatest percentage of available P at all P doses. However, percentage P uptake by wheat relative to other species varied with P dose. Only four weed species extracted more P than wheat at low P levels, but 17 weed species extracted more P at high soil P levels. These findings have significant implications as to how soil fertility may influence crop–weed competition.
Nitrogen fertilizer is a major input cost in canola (Brassica napus L.) production and farmers are interested in improving N use efficiencies. A multi‐site study in western Canada was conducted to determine the merits of polymer‐coated urea (Environmentally Smart Nitrogen, ESN) compared with urea on weed management and yield of hybrid and open‐pollinated (OP) canola. Treatments included a hybrid and OP canola cultivar, ESN and urea, 100 and 150% of soil test N fertilizer rates, and 50 and 100% of registered in‐crop herbicide rates. Canola was grown in rotation with barley (Hordeum vulgare L.) in a no‐till system and both crops of the rotation were present each year. Fertilizer and herbicide rate treatments were applied to the same plots in four consecutive years to determine annual and cumulative effects. Hybrid compared with OP canola reduced weed tissue N concentration in 40% of the cases and reduced weed biomass in 80% of the cases. Additionally, weed tissue N concentration was lower with ESN than with urea in 70% of the cases, indicating that crop–weed competition for soil N might be reduced if ESN were used. Canola yield was greater for the hybrid cultivar in 15 of 20 site‐years. Both cultivars expressed a positive yield response to the 150% N fertilizer rate in 10 of 20 site‐years. This yield response occurred in three additional site‐years with hybrid canola, indicating that hybrid cultivars have a higher N demand under favorable growing conditions. Canola yield was similar with ESN and urea in 14 of 20 site‐years. The ESN compared with urea increased canola yield in 4 site‐years and in one additional site‐year for hybrid canola, indicating that ESN may be advantageous in some situations. Canola seed oil concentration was similar with ESN and urea in 19 of 20 site‐years. Information gained in this study will be used to develop improved fertilization strategies for canola production on the semiarid Canadian prairies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.