In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission (NRC) and Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing severe accident modeling capability of the MELCOR code. MELCOR is the state-of-the-art system-level severe accident analysis code used by the NRC to provide information for its decision-making process in this area. The objectives of the project were: (1) collect, verify, and document data on the accidents by developing an information portal system; (2) reconstruct the accident progressions using computer models and accident data; and (3) validate the MELCOR code and the Fukushima models, and suggest potential future data needs. Idaho National Laboratory (INL) developed an information portal for the Fukushima Daiichi accident information. Sandia National Laboratories (SNL) developed MELCOR 2.1 models of the Fukushima Daiichi Units 1, 2, and 3 reactors and the Unit 4 spent fuel pool. Oak Ridge National Laboratory (ORNL) developed a MELCOR 1.8.5 model of the Unit 3 reactor and a TRACE model of the Unit 4 spent fuel pool. The good correlation of the results from the SNL models with the data from the plants and with the ORNL model results provides additional confidence in the MELCOR code. The modeling effort has also provided insights into future data needs for both model development and validation.
A methodology for using the MELCOR code with the Latin Hypercube Sampling method was developed to estimate uncertainty in various predicted quantities such as hydrogen generation or release of fission products under severe accident conditions. In this case, the emphasis was on estimating the range of hydrogen sources in station blackout conditions in the Sequoyah Ice Condenser plant, taking into account uncertainties in the modeled physics known to affect hydrogen generation. The method uses user-specified likelihood distributions for uncertain model parameters, which may include uncertainties of a stochastic nature, to produce a collection of code calculations, or realizations, characterizing the range of possible outcomes. Forty MELCOR code realizations of Sequoyah were conducted that included 10 uncertain parameters, producing a range of in-vessel hydrogen quantities. The range of total hydrogen produced was approximately 583kg 131kg. Sensitivity analyses revealed expected trends with respected to the parameters of greatest importance, however, considerable scatter in results when plotted against any of the uncertain parameters was observed, with no parameter manifesting dominant effects on hydrogen generation. It is concluded that, with respect to the physics parameters investigated, in order to further reduce predicted hydrogen uncertainty, it would be necessary to reduce all physics parameter uncertainties similarly, bearing in mind that some parameters are inherently uncertain within a range. It is suspected that some residual uncertainty associated with modeling complex, coupled and synergistic phenomena, is an inherent aspect of complex systems and cannot be reduced to point value estimates. The probabilistic analyses such as the one demonstrated in this work are important to properly characterize response of complex systems such as severe accident progression in nuclear power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.