Overstimulation of ionotropic glutamate receptors leads to excitotoxic neuronal death, which has been implicated in the neurodegeneration of neurological diseases. The present study examined the role of putative low-affinity kainate receptor subtype (GluR5-7) agonists in excitotoxicity in cultured murine cortical neurons. The concentration-dependent decrease in cell viability induced by the agonists kainate (1-1,000 microM) and (RS)-2-amino-3-(hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA; 1-1,000 microM) was only attenuated by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466; 20 microM). (S)-5-iodowillardiine (1-1,000 microM)-induced toxicity was attenuated by CNQX (20 microM), GYKI 52466 (20 microM) and MK-801 (10 microM); however, (2S, 4R)-4-methylglutamate (1-120 microM)-induced toxicity was not attenuated by the antagonists. None of the agonists possessed selective actions at GluR5-7. Morphological observations (phase-contrast and fluorescence microscopy) revealed that the agonists induced two distinct patterns of neuronal injury. After 24 hr of treatment, low concentrations of agonists (1-30 microM) produced cellular shrinkage and nuclear granulation consistent with slow, apoptotic-like neuronal death. Pyknotic labeling with the DNA binding dye Sytox green confirmed these apoptotic characteristics, which significantly decreased with increasing concentrations. After 4 hr, increasing concentrations of agonists (100-1,000 microM) induced cellular swelling, with subsequent extracellular debris; labeling with propidium iodide revealed isolated nuclei consistent with the increased involvement of rapid necrosis. Thus, all putative GluR5-7 agonists produced excitotoxicity across a necrotic-apoptotic continuum in murine cortical neuron cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.