The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human embryonic kidney (HEK293) cells revealed that TRP3 channels differ in being store independent. However, condensed cortical F-actin prevented activation of both SOC and TRP3 channels, which suggests that ER-PM interactions underlie coupling of both channels. A cell-permeant inhibitor of inositol trisphosphate receptor (InsP3R) function, 2-aminoethoxydiphenyl borate, prevented both receptor-induced TRP3 activation and store-induced SOC activation. It is concluded that InsP3Rs mediate both SOC and TRP channel opening and that the InsP3R is essential for maintaining coupling between store emptying and physiological activation of SOCs.
Mitochondrial cytochrome c release and inositol (1,4,5) trisphosphate receptor (InsP(3)R)-mediated calcium release from the endoplasmic reticulum mediate apoptosis in response to specific stimuli. Here we show that cytochrome c binds to the InsP(3)R during apoptosis. Addition of 1 nM cytochrome c blocks calcium-dependent inhibition of InsP(3)R function. Early in apoptosis, cytochrome c translocates to the endoplasmic reticulum where it selectively binds InsP(3)R, resulting in sustained, oscillatory cytosolic calcium increases. These calcium events are linked to the coordinate release of cytochrome c from all mitochondria. Our findings identify a feed-forward mechanism whereby early cytochrome c release increases InsP(3)R function, resulting in augmented cytochrome c release that amplifies the apoptotic signal.
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated channels' (SOCs) -- remains a molecular and mechanistic mystery. Here we review new insights into the exchange of signals between the endoplasmic reticulum (ER) and plasma membrane that result in activation of calcium entry channels mediating crucial long-term calcium signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.