Src homology 2 (SH2) domains participate in protein tyrosine kinase (PTK)-mediated cellular signal transduction through their ability to bind with high affinity to phosphotyrosyl (pTyr)-bearing protein sequences. Although peptides containing pTyr competitively inhibit the binding between phosphoproteins and cognate SH2 proteins in a sequence-specific manner, such peptides are rapidly dephosphorylated by cellular phosphatases. We now describe our efforts to develop SH2 inhibitory peptides containing phosphatase-resistant pTyr surrogates. The parent compound, (phosphonomethyl)phenylalanine (Pmp), is a phosphonate-based mimetic of pTyr in which the phosphate ester oxygen (> COPO3H2) has been replaced by a methylene unit (> CCX2PO3H2, X2 = H2). Pmp analogues bearing fluorine (X2 = H, F or X2 = F2) or hydroxyl (X2 = H, OH) substituents on the phosphonate alpha-methylene carbon have been prepared and incorporated into peptides for use as SH2 domain inhibitors. In an assay using the C-terminal SH2 domain of phosphatidylinositol (PI) 3-kinase, peptides having a GXVPML sequence [where X = pTyr, Pmp, hydroxy-Pmp (HPmp), monofluoro-Pmp (FPmp), and difluoro-Pmp (F2Pmp)] exhibited binding potency in the order HPmp < Pmp < FPmp < F2Pmp = pTyr. Distinct peptide sequences which bind selectively with Src and Grb2 SH2 domains were also prepared with pTyr and F2Pmp. The F2Pmp peptides bound with high (0.2- to 5-fold) relative affinity, compared to analogous pTyr peptides. We conclude that peptides containing F2Pmp bind to SH2 domains with high affinity and specificity and, being resistant to cellular phosphatases, should provide a generally useful tool for disrupting SH2 domain-mediated signaling pathways in intact cells.
We have developed a competition binding assay to quantify relative affinities of isolated Src-homology 2 (SH2) domains for phosphopeptide sequences. Eleven synthetic 11-12-amino acid phosphopeptides containing YMXM or YVXM recognition motifs bound to a PI 3-kinase p85 SH2 domain with highest affinities, including sequences surrounding phosphorylated tyrosines of the PDGF, CSF-1/c-Fms, and kit-encoded receptors, IRS-1, and polyoma middle T antigens; matched, unphosphorylated sequences did not bind. A scrambled YMXM phosphopeptide or sequences corresponding to the GAP or PLC-gamma SH2 domain binding motifs of the PDGF, FGF, and EGF receptors bound to the p85 SH2 domain with 30-100-fold reduced affinity, indicating that this affinity range confers specificity. Binding specificity was appropriately reversed with an SH2 domain from PLC-gamma: a phosphopeptide corresponding to the site surrounding PDGF receptor Tyr1021 binds with approximately 40-fold higher affinity than a YMXM-phosphopeptide. We conclude that essential features of specific phosphoprotein/SH2 domain interactions can be reconstituted using truncated versions of both the phosphoprotein (a phosphopeptide) and cognate SH2 domain-containing protein (the SH2 domain). SH2 domain binding specificity results from differences in affinity conferred by the linear sequence surrounding phosphotyrosine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.