The covariance structure of a homogeneous isotropic turbulent wind velocity field is derived in terms of modified Bessel functions for an extended form of the Kàrmàn velocity spectrum, including explicit expressions for the transverse coherence functions. A concept of transformed isotropic turbulence is introduced to account for differences in the axial, transverse and vertical fluctuating wind velocities and length scales in natural wind. A special form of the auto-regressive simulation format is developed for convected turbulence with exponentially increasing intervals to the regression planes. In each step, the wind velocity field in a transverse plane is represented by a conditional mean field and a stochastic contribution determined explicitly by the time-space covariances. Simulation results are presented for a square area of dimension less than the integral length scale, representative of buildings and wind turbines, and a horizontal line of length six times the length scale, representative of a long-span bridge. The simulations demonstrate high accuracy of simulated spectral densities, covariance functions and transverse coherence functions. The simulated results do not show visible dependence on the specific points used for the simulated records. The efficiency and the free simulation point configuration suggest high competitiveness compared to fast Fourier transform-based spectral methods.
A damping system targeting flutter instability motions of long-span suspension bridges is presented. The damping system consists of four symmetrically located and equally tuned passive devices extracting energy from the structural system, based on the relative displacement between the pylons and the main suspension cables. Each device consists of a viscous damper and a spring in parallel, connecting the pylon to the suspension cable via a pretensioned cable.The tuning of the damping system is based on the asymptotic solution to a two-component subspace approximation, using still-air modes as input. It is shown that the simple tuning approach provides accurate results and that the damping system is capable of providing a relatively high amount of damping on the modes relevant for flutter. The efficacy of the damping system is illustrated numerically on a full aeroelastic model of a single-span suspension bridge with and without midspan cable clamps, and it is found that the stability limit of both structural systems can be increased significantly. Also, the buffeting response is evaluated, and especially, the torsional response is lowered. Different device configurations are investigated by shifting the anchorage point on the pylon and on the suspension cable, and the influence of the flexible connecting cable is assessed. Finally, design considerations concerning spring deformations, pretensioning of the system, and in-service displacements and forces are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.