Abstract:The polyisoprenylation pathway enzymes have been the focus of numerous studies to better understand the roles of polyisoprenylated proteins in eukaryotic cells and to identify novel targets against diseases such as cancer. The final step of the pathway is a reversible reaction catalyzed by isoprenyl carboxylmethyl transferase (icmt) whose products are then hydrolyzed by polyisoprenylated methylated protein methyl esterase (PMPMEase). Unlike the other pathway enzymes, the esterase has received little attention. We recently purified PMPMEase from porcine liver using an S-polyisoprenylated cysteine methyl ester substrate-dependent screening assay. However, no data is available showing its relative interaction with structurally diverse substrates. As such, its role as the putative endogenous PMPMEase has not been demonstrated. A series of substrates with S-alkyl substituents ranging from 2 to 20 carbons, including the two moieties found in polyisoprenylated proteins, were synthesized. Enzyme kinetics analysis revealed a 33-fold increase in affinity (K M values) from ethyl-(C-2, 505±63 μM), prenyl-(C-5, 294±25 μM), trans-geranyl-(C-10, 87±12 μM), trans, trans-farnesyl-(C-15, 29±2.2 μM) to all trans-geranylgeranyl-(C-20-, 15±2.7 μM) based analogs. Comparative molecular field analysis of the data yielded a cross-validated q 2 of 0.863±0.365 and a final R 2 of 0.995. Since the substrates with the S-trans, trans-farnesyl and S-all trans-geranylgeranyl moieties that occur in proteins show the highest affinity towards PMPMEase and are not hydrolyzed by the cholinesterases, the results suggest that polyisoprenylated proteins are the endogenous substrates of this esterase. The results suggest design strategies for high affinity and selective inhibitors of PMPMEase.
The polyisoprenylation pathway incorporates a reversible step that metabolizes polyisoprenylated methylated proteins from the ester to the carboxylate form. Polyisoprenylated protein methyl transferase (PPMTase) catalyses the esterification whereas polyisoprenylated methylated protein methyl esterase (PMPMEase) hydrolyzes them. Significant changes in the balance between the two enzymes may alter polyisoprenylated protein function possibly resulting in disease. Previous studies show that PMPMEase is the serine hydrolase, Sus scrofa carboxylesterase. Its susceptibility to the nonspecific serine hydrolase inhibitor, phenylmethylsulfonyl fluoride (PMSF) paved the way for its use as a prototypical compound to design and synthesize a series of putative high affinity specific inhibitors of PMPMEase. Pseudo first-order kinetics revealed an over 680-fold increase in kobs/[I] values from PMSF (6 M−1s−1), S-phenyl (L-50, 180 M−1s−1), S-benzyl (L-51, 350 M−1s−1), S-trans, trans-farnesyl (L-28, 2000 M−1s−1), to S-trans-geranylated (L-23, 4100 M−1s−1) 2-thioethanesulfonyl fluorides. C10 S-alkyl substitution revealed a kobs/[I] value (1800 M−1s−1) that was 298 times greater than that for PMSF. The compounds induced the degeneration of human neuroblastoma SH-SY5Y cells with EC50 values of 49, 130 and >1000 μM for L-28, L-23 and PMSF, respectively. The increased affinity with the polyisoprenyl derivatization is consistent with the observed substrate specificity and the reported hydrophobic nature of the active site. These results suggest that (1) PMPMEase is a key enzyme for polyisoprenylated protein metabolism, (2) regulation of its activity is essential for maintaining normal cell viability, (3) abnormal activities may be involved in degenerative diseases and cancers and (4) its specific inhibitors may be useful in combating cancers.
Pancreatic cancer is the most deadly neoplasm with a 5-year survival rate of less than 6%. Over 90% of cases harbor K-Ras mutations, which are the most challenging to treat due to lack of effective therapies. Here, we reveal that polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in 93% of pancreatic ductal adenocarcinoma. We further present polyisoprenylated cysteinyl amide inhibitors (PCAIs) as novel compounds designed with structural elements for optimal in vivo activities and selective disruption of polyisoprenylation-mediated protein functions. The PCAIs inhibited PMPMEase with Ki values ranging from 3.7 to 20 µM. The 48 h EC50 values for pancreatic cancer Mia PaCa-2 and BxPC-3 cell lines were as low as 1.9 µM while salirasib and farnesylthiosalicylamide were ineffective at 20 µM. The PCAIs thus have the potential to serve as effective therapies for pancreatic and other cancers with hyperactive growth signaling pathways mediated by Ras and related G-proteins.
Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester-forming polyisoprenylated protein methyl transferase- and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)-catalyzed reactions. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been linked with antitumorigeneis and tumorigenesis, respectively. PUFAs are structurally similar to the polyisoprenyl groups and may interfere with polyisoprenylated protein metabolism. It was hypothesized that PUFAs may be more potent inhibitors of PMPMEase than their more polar oxidative metabolites, the prostaglandins. As such, the relative effects of PUFAs and prostaglandins on PMPMEase could explain the association between cyclooxygenase-2 (COX-2) expression in tumors, the chemopreventive effects of the non-steroidal anti-inflammatory (NSAIDs) COX-2 inhibitors and PUFAs. PUFAs such as arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids inhibited PMPMEase activity with Ki values of 0.12 to 3.7 μM. The most potent prostaglandin was 63-fold less potent than AA. The PUFAs were also more effective at inducing neuroblastoma cell death at physiologically equivalent concentrations. The lost PMPMEase activity in AA-treated degenerating cells was restored by incubating the lysates with COX-1 or COX-2. PUFAs may thus be physiological regulators of cell growth and could owe these effects to PMPMEase inhibition.
Polyisoprenylated proteins (PPs) methylation by polyisoprenylated protein methyl transferase (PPMTase) is counteracted by polyisoprenylated methylated protein methyl esterase (PMPMEase). This is the only reversible step of the polyisoprenylation pathway as the relative amounts of the acid and ester forms are determined by the two competing reactions. Since PMPMEase and PPMTase may influence both the structural/functional conformations of PPs, a thorough study of these enzymes is essential to our understanding of the structural/functional features of PPs. PMPMEase has been reported under such pseudonyms as human carboxylesterase 1 (hCE1) because of its apparent broad substrate spectrum. The current study aimed to show the complementarity between its active site and the polyisoprenylated substrates that it metabolizes. Kinetics analysis was conducted with N-, S-and O-substituted substrates using porcine liver PMPMEase and docking analysis using Arguslab. Consistent with the biochemical analysis, the Sethyl analog yielded an AScore binding energy of -11.32 compared to -13.48, -14.88, -16.15, and -16.81 kcal/mol for S-prenyl (C-5), S-trans-geranyl (C-10), S-trans,trans-farnesyl (C-15) and Sall trans-geranylgeranyl (C-20), respectively. The all trans-geranylgeranyl moiety provides the optimal size for active site interactions. The data reveal that the trans,trans-farnesyl and all transgeranylgeranyl groups, which are reminiscent of endogenous PPs modifications, have the highest affinity for PMPMEase. Since PPs such as monomeric G-proteins are oncogenic, PMPMEase may be viewed as a viable target for anticancer drug development. The analyses reveal the important structural elements for the design of specific PMPMEase inhibitors to serve in the modulation of oncogenic PPs activities. The results also show that hCE1's repertoire of substrates extends beyond xenobiotics to include PPs as its endogenous substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.