The continuous release of pharmaceuticals and personal care products (PPCPs) into freshwater systems impacts the health of aquatic organisms. This study evaluates the concentrations and bioaccumulation of PPCPs and the selective uptake of antidepressants in fish from the Niagara River, which connects two of the North American Great lakes (Erie and Ontario). The Niagara River receives PPCPs from different wastewater treatment plants (WWTPs) situated along the river and Lake Erie. Of the 22 targeted PPCPs, 11 were found at part-per-billion levels in WWTP effluents and at part-per-trillion levels in river water samples. The major pollutants observed were the antidepressants (citalopram, paroxetine, sertraline, venlafaxine, and bupropion, and their metabolites norfluoxetine and norsertraline) and the antihistamine diphenhydramine. These PPCPs accumulate in various fish organs, with norsertraline exhibiting the highest bioaccumulation factor (up to about 3000) in the liver of rudd (Scardinius erythrophthalmus), which is an invasive species to the Great Lakes. The antidepressants were selectively taken up by various fish species at different trophic levels, and were further metabolized once inside the organism. The highest bioaccumulation was found in the brain, followed by liver, muscle, and gonads, and can be attributed to direct exposure to WWTP effluent.
Non-targeted analysis (NTA) methods are increasingly used to discover chemicals of emerging concern (CECs), but the extent to which these methods can support exposure and health studies remains to be determined. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1,269 unique substances from EPA's ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365 substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS). An unblinded evaluation was then performed to identify limitations of our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once. Considerable discordance in substance identification was observed when comparing a subset of our results derived from two separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely characterize only a subset of ToxCast substances (and, by extension, *
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.