We have studied the interactions of Ba ion with K channels. Ba t+ blocks these channels when applied either internally or externally in millimolar concentrations . Periodic depolarizations enhance block with internal Bat+ , but
We have examined the effects of a variety of monovalent cations on K channel gating in squid giant axons. The addition of the permeant cations K, Rb, or Cs to the external medium decreases the channel closing rate and causes a negative shift of the conductance-voltage relationship. Both of these effects are larger in Rb than in K. The opening kinetics of the K channel are, on the other hand, unaffected by these monovalent cations. Other permeant species, like NH 4 and TI, slightly increase the closing rate, whereas the relatively impermeant cations Na, Li, and Tris have little or no effect on K channel gating . The permeant cations have different effects on the reversal potential and the shape of the instantaneous current-voltage relationship . These effects give information about entry and binding of the cations in K channels . Rb, for example, enters the pore readily (large shift of the reversal potential), but binds tightly to the channel interior, inhibiting current flow . We find a correlation between the occupancy of the channel by a monovalent cation and the closing rate, and conclude that the presence of a monovalent cation in the pore inhibits channel closing, and thereby causes a leftward shift in the activation-voltage curve. In causing these effects, the cations appear to bind near the inner surface of the membrane .
A B $ T R A C T The characteristics of potassium channel block by a diverse group of quaternary ammonium (QA) ions was examined in squid axons. Altering the size and nature of the head and/or tail groups of the QA ions applied internally produced only quantitative differences in the potassium current block. Although their entry rate is diminished, compounds with head groups as large as 11 • 12 ,~, are capable of occluding the channel, whereas the smallest QA ions, with head groups approximately 5 • 6 ,~, are not potent blockers. When one or three terminal hydrogens of the head group were replaced by hydroxyl moieties, the compound's blocking ability was diminished, suggesting that QA binding is not improved by hydrogen bonding at these positions. QA ions bound to their site within the potassium channel with 1:1 stoichiometry, and the site is perhaps 20% or more of the distance through the membrane electric field. Raising external potassium concentration did not alter the steady-state or kinetic features of the QA block of outward potassium currents; however, increasing temperature or adding Ba 2+ internally increased the rate of decay of the QA-blocked currents. From the structure-function analysis of the QA ions, projections concerning both the architecture of the potassium channel's inner mouth and the significance of various chemical constituents of the ions were made. The potassium channel may now be pictured as having a wider mouth (up to 11 • 12 ,~) extending to the QA binding site and then narrowing quickly to the region of channel selectivity. Important alterations that improve the blocking ability of the compounds include: (a) lengthening the alkyl hydrocarbon tail group (up to 10 carbons), (b) lengthening a second hydrocarbon chain of the head group (e.g., decyldimethylphenylammonium bromide [Cl0DMth]), and (c) adding a carbonyl moiety to the tail (e.g., ambutonium).
The effects of n-octanol and n-decanol on nerve membrane sodium channels were examined in internally perfused, voltage-clamped squid giant axons. Both n-octanol and n-decanol almost completely eliminated the residual sodium conductance at the end of 8-ms voltage steps. In contrast, peak sodium conductance was only partially reduced. This block of peak and residual sodium conductance was very reversible and seen with both internal and external alkanol application. The differential sensitivity of peak and residual conductance to alkanol treatment was eliminated after internal pronase treatment, suggesting that n-octanol and n-decanol enhance the normal inactivation mechanism rather than directly blocking channels in a time-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.