Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long–distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem‐limitation properties resemble those of the Luteoviridae , the family in which BYDV is classified. In contrast, many genes and cis ‐acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae . Taxonomy: BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV‐PAV and BYDV‐MAV. The former BYDV‐RPV is now Cereal yellow dwarf virus‐RPV (CYDV‐RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: ∼25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50–55 kDa) coat protein. 5.6–5.8 kb positive sense RNA genome with no 5′‐cap and no poly(A) tail. Host range: Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Symptoms: Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid‐transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: ‘Barley Yellow Dwarf Disease: Recent Advances and Future Strategies’, CIMMYT, El Batan, Mexico, 1–5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html
We determined the 3prime prime or minute-terminal primary and secondary structures required for replication of Barley yellow dwarf virus (BYDV) RNA in oat protoplasts. Computer predictions, nuclease probing, phylogenetic comparisons, and replication assays of specific mutants and chimeras revealed that the 3prime prime or minute-terminal 109 nucleotides (nt) form a structure with three to four stem-loops followed by a coaxially stacked helix incorporating the last four nt [(A/U)CCC]. Sequences upstream of the 109-nt region also contributed to RNA accumulation. The base-pairing but not the sequences or bulges in the stems were essential for replication, but any changes to the 3prime prime or minute-terminal helix destroyed replication. The two 3prime prime or minute-proximal tetraloops tolerated all changes, but the two 3prime prime or minute-distal tetraloops gave most efficient replication if they fit the GNRA consensus. A mutant lacking the 3prime prime or minute-proximal stem-loop produced elevated levels of less-than-full-length minus strands, and no (+) strand. We propose that a "pocket" structure is the origin of (minus sign)-strand synthesis, which is negatively regulated by the inaccessible conformation of the 3prime prime or minute terminus, thus favoring a high (+)/(minus sign) ratio. This 3prime prime or minute structure and the polymerase homologies suggest that genus Luteovirus is more closely related to the Tombusviridae family than to other Luteoviridae genera.
The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV).
Detailed investigation of virus replication is facilitated by the construction of a full-length infectious clone of the viral genome. To date, this has not been achieved for members of the family Dicistroviridae. Here we demonstrate the construction of a baculovirus that expresses a dicistrovirus that is infectious in its natural host. We inserted a full-length cDNA clone of the genomic RNA of the dicistrovirus Rhopalosiphum padi virus (RhPV) into a baculovirus expression vector. Virus particles containing RhPV RNA accumulated in the nuclei of baculovirus-infected Sf21 cells expressing the recombinant RhPV clone. These virus particles were infectious in R. padi, a ubiquitous aphid vector of major cereal viruses. The recombinant virus was transmitted efficiently between aphids, despite the presence of 119 and 210 vector-derived bases that were stably maintained at the 5 and 3 ends, respectively, of the RhPV genome. The maintenance of such a nonviral sequence was surprising considering that most RNA viruses tolerate few nonviral bases beyond their natural termini. The use of a baculovirus to express a small RNA virus opens avenues for investigating replication of dicistroviruses and may allow large-scale production of these viruses for use as biopesticides.
Availability of a cloned genome from which infectious RNA can be transcribed is essential for investigating RNA virus molecular mechanisms. To date, no such clones have been reported for the Dicistroviridae, an emerging family of invertebrate viruses. Previously we demonstrated baculovirus-driven expression of a cloned Rhopalosiphum padi virus (RhPV; Dicistroviridae) genome that was infectious to aphids, and we identified a cell line (GWSS-Z10) from the glassy-winged sharpshooter, that supports RhPV replication. Here we report that RNA transcribed from a full-length cDNA clone is infectious. Transfection of GWSS-Z10 cells with the RhPV transcript resulted in cytopathic effects, ultrastructural changes, and accumulation of progeny virions, consistent with virus infection. Virions from transcript-infected cells were infectious in aphids. This infectious transcript of a cloned RhPV genome provides a valuable tool, and a more tractable system without interference from baculovirus infection, for investigating replication and pathogenesis of dicistroviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.