Large Neighbourhood Search (LNS) is an algorithmic framework for optimization problems that can yield good performance in many domains. In this paper, we present a method for applying LNS to improve anytime maximum satisfiability (MaxSAT) solving by introducing a neighbourhood selection policy that shows good empirical performance. We show that our LNS solver can often improve the suboptimal solutions produced by other anytime MaxSAT solvers. When starting with a suboptimal solution of reasonable quality, our approach often finds a better solution than the original anytime solver can achieve. We demonstrate that implementing our LNS solver on top of three different state-of-the-art anytime solvers improves the anytime performance of all three solvers within the standard time limit used in the incomplete tracks of the annual MaxSAT Evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.