Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b+/CD45high/Ly6Chigh macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of de-ramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes (GILZ and FKBP51). The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) after stimulation with lipopolysaccharide (LPS) compared to microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1 deficient (IL-1r1-/-) mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.
Unchecked aggression and violence exact a significant toll on human societies. Aggression is an umbrella term for behaviours that are intended to inflict harm. These behaviours evolved as adaptations to deal with competition, but when expressed out of context, they can have destructive consequences. Uncontrolled aggression has several components, such as impaired recognition of social cues and enhanced impulsivity. Molecular approaches to the study of aggression have revealed biological signals that mediate the components of aggressive behaviour. These signals may provide targets for therapeutic intervention for individuals with extreme aggressive outbursts. This Review summarizes the complex interactions between genes, biological signals, neural circuits and the environment that influence the development and expression of aggressive behaviour.
The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans.circadian rhythms | light pollution | metabolic syndrome | mice | obesity D uring the past 2 decades, obesity has shifted from an epidemic centered in the United States to a global issue. Although well-documented factors such as caloric intake, dietary choices, and lack of exercise are known to contribute to the prevalence of obesity and metabolic disorders, additional environmental factors are now considered critical in the development and maintenance of obesity (1). The increase of light at night (LAN) during the 20th century coincides with increasing rates of obesity and metabolic disorders throughout the world. Artificial lighting allows people to extend daytime activities into the night but as a consequence produces significant environmental light pollution caused by light straying into the atmosphere and brightening the nighttime sky.Circadian regulation of energy homeostasis is controlled by an endogenous biological clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, that is synchronized by photic information that travels directly from light-sensitive ganglion cells in the retina to the SCN, thereby entraining individuals' physiology and behavior to the external day-night cycle (2). Importantly, light is the most potent entraining signal for the circadian clock, although other factors such as food consumption influence clock signaling (3). To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep. Shift work disrupts ...
Animals living in temporally dynamic environments experience variation in resource availability, climate and threat of infection over the course of the year. Thus, to survive and reproduce successfully, these organisms must allocate resources among competing physiological systems in such a way as to maximize fitness in changing environments. Here, we review evidence supporting the hypothesis that physiological trade-offs, particularly those between the reproductive and immune systems, mediate part of the seasonal changes detected in the immune defences of many vertebrates. Abundant recent work has detected significant energetic and nutritional costs of immune defence. Sometimes these physiological costs are sufficiently large to affect fitness (e.g. reproductive output, growth or survival), indicating that selection for appropriate allocation strategies probably occurred in the past. Because hormones often orchestrate allocations among physiological systems, the endocrine mediators of seasonal changes in immune activity are discussed. Many hormones, including melatonin, glucocorticoids and androgens have extensive and consistent effects on the immune system, and they change in systematic fashions over the year. Finally, a modified framework within which to conduct future studies in ecological immunology is proposed, viz. a heightened appreciation of the complex but intelligible nature of the vertebrate immune system. Although other factors besides tradeoffs undoubtedly influence seasonal variation in immune defence in animals, a growing literature supports a role for physiological trade-offs and the fitness consequences they sometimes produce.
Light pollution by urban developmentUrban development has brought the need for artificial lighting of roadways, shopping centers, stadiums, and homes. Some of this light strays and scatters in the atmosphere, bringing about a brightening of the natural sky beyond background levels, called urban sky glow [15,16]. Light pollution has demonstrated effects on daily Abstract: Organisms must adapt to the temporal characteristics of their surroundings to successfully survive and reproduce. Variation in the daily light cycle, for example, acts through endocrine and neurobiological mechanisms to control several downstream physiological and behavioral processes. Interruptions in normal circadian light cycles and the resulting disruption of normal melatonin rhythms cause widespread disruptive effects involving multiple body systems, the results of which can have serious medical consequences for individuals, as well as large-scale ecological implications for populations. With the invention of electrical lights about a century ago, the temporal organization of the environment has been drastically altered for many species, including humans. In addition to the incidental exposure to light at night through light pollution, humans also engage in increasing amounts of shift-work, resulting in repeated and often long-term circadian disruption. The increasing prevalence of exposure to light at night has significant social, ecological, behavioral, and health consequences that are only now becoming apparent. This review addresses the complicated web of potential behavioral and physiological consequences resulting from exposure to light at night, as well as the large-scale medical and ecological implications that may result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.