Four cochlear implant users, having normal hearing in the unimplanted ear, compared the pitches of electrical and acoustic stimuli presented to the two ears. Comparisons were between 1,031-pps pulse trains and pure tones or between 12 and 25-pps electric pulse trains and bandpass-filtered acoustic pulse trains of the same rate. Three methods—pitch adjustment, constant stimuli, and interleaved adaptive procedures—were used. For all methods, we showed that the results can be strongly influenced by non-sensory biases arising from the range of acoustic stimuli presented, and proposed a series of checks that should be made to alert the experimenter to those biases. We then showed that the results of comparisons that survived these checks do not deviate consistently from the predictions of a widely-used cochlear frequency-to-place formula or of a computational cochlear model. We also demonstrate that substantial range effects occur with other widely used experimental methods, even for normal-hearing listeners.
Simultaneous stimulation with adjacent electrode contacts in the basal end of the cochlea was generally able to produce a single, gradually shifting intermediate pitch percept. Simultaneous stimulation beyond the first cochlear turn, sequential stimulation and simultaneous stimulation with non-adjacent electrode contacts often produced two regions of excitation. In the case of sequential stimulation the total amount of current to reach most comfortable loudness was raised, both in the model and in the patients.
The clinical observation of increased FNS in cases of cochlear otosclerosis has been demonstrated in a computational model. Rather than decreased FN threshold, it is the increased levels for cochlear stimulation that is the main factor. Particularly, perimodiolar designs with more shielding against lateral spread of current could reduce the likelihood of FNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.