ABSTRACT:The polycyclic aromatic hydrocarbon naphthalene is an environmental pollutant, a component of jet fuel, and, since 2000, has been reclassified as a potential human carcinogen. Few studies of the in vitro human metabolism of naphthalene are available, and these focus primarily on lung metabolism. The current studies were performed to characterize naphthalene metabolism by human cytochromes P450. Naphthalene metabolites from pooled human liver microsomes (pHLMs) were trans-1,2-dihydro-1,2-naphthalenediol (dihydrodiol), 1-naphthol, and 2-naphthol. Metabolite production generated K m values of 23, 40, and 116 M and V max values of 2860, 268, and 22 pmol/mg protein/min, respectively. P450 isoform screening of naphthalene metabolism identified CYP1A2 as the most efficient isoform for producing dihydrodiol and 1-naphthol, and CYP3A4 as the most effective for 2-naphthol production. Metabolism of the primary metabolites of naphthalene was also studied to identify secondary metabolites. Whereas 2-naphthol was readily metabolized by pHLMs to produce 2,6-and 1,7-dihydroxynaphthalene, dihydrodiol and 1-naphthol were inefficient substrates for pHLMs. A series of human P450 isoforms was used to further explore the metabolism of dihydrodiol and 1-naphthol. 1,4-Naphthoquinone and four minor unknown metabolites from 1-naphthol were observed, and CYP1A2 and 2D6*1 were identified as the most active isoforms for the production of 1,4-naphthoquinone. Dihydrodiol was metabolized by P450 isoforms to three minor unidentified metabolites with CYP3A4 and CYP2A6 having the greatest activity toward this substrate. The metabolism of dihydrodiol by P450 isoforms was lower than that of 1-naphthol. These studies identify primary and secondary metabolites of naphthalene produced by pHLMs and P450 isoforms.
ABSTRACT:Cytochrome P450 (P450) enzymes are major catalysts involved in the metabolism of xenobiotics and endogenous substrates such as testosterone (TST). Major TST metabolites formed by human liver microsomes include 6-hydroxytestosterone (6-OHTST), 2-hydroxytestosterone (2-OHTST), and 15-hydroxytestosterone (15-OHTST). A screen of 16 cDNA-expressed human P450 isoforms demonstrated that 94% of all TST metabolites are produced by members of the CYP3A subfamily with 6-OHTST accounting for 86% of all TST metabolites. Similar K m values were observed for production of 6-, 2-, and 15-OHTST with human liver microsomes (HLM) and CYP3A4. However, V max and CL int were significantly higher for 6-OHTST than 2-OHTST (ϳ18-fold) and 15-OHTST (ϳ40-fold). Preincubation of HLM with a variety of ligands, including chemicals used in military deployments, resulted in varying levels of inhibition or activation of TST metabolism. The greatest inhibition of TST metabolism in HLM was following preincubation with organophosphorus compounds, including chlorpyrifos, phorate, and fonofos, with up to 80% inhibition noticed for several metabolites including 6-OHTST. Preincubation of CYP3A4 with chlorpyrifos, but not chlorpyrifos-oxon, resulted in 98% inhibition of TST metabolism. Phorate and fonofos also inhibited the production of most primary metabolites of CYP3A4. Kinetic analysis indicated that chlorpyrifos was one of the most potent inhibitors of major TST metabolites followed by fonofos and phorate. Chlorpyrifos, fonofos, and phorate inhibited major TST metabolites noncompetitively and irreversibly. Conversely, preincubation of CYP3A4 with pyridostigmine bromide increased metabolite levels of 6-OHTST and 2-OHTST. Preincubation of human aromatase (CYP19) with the test chemicals had no effect on the production of the endogenous estrogen, 17-estradiol.
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively) and DEA (0.041 nmol/min/mg and 0.040 nmol/min/mg, respectively). We have also shown that the cytochrome P450 isoforms responsible for human metabolism of acetochlor, butachlor, and metolachlor are CYP3A4 and CYP2B6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.