The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rodlike shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.bacterial cytoskeleton | bacterial cell shape | cell growth | cytoskeleton dynamics | robust rod shape B acterial cell shape is structurally determined by a rigid peptidoglycan (PG) cell wall built outside of the cytoplasmic membrane by a series of cell wall assembly enzymes (1). In many rod-shaped species these enzymes are coordinated by the actinlike protein, MreB, though the mechanism coupling this cytoplasmic protein to the extracellular cell wall enzymes and the specific functions executed by MreB have remained largely mysterious. Polymeric MreB is necessary to maintain rod-shaped cells, as inhibition of MreB polymerization or deletion of mreB cause cells to lose their rod shape. Initially, MreB was thought to form long helical structures that statically define rod shape (2, 3). Later, improved fluorescent fusion proteins and imaging methods revealed that MreB forms short polymers that dynamically rotate around the cell circumference (4-7).This circumferential rotation requires cell wall synthesis and is conserved across both Gram-negative and Gram-positive species (5-7), leading multiple groups to conclude that rotation promotes rod-shape formation. However, experimentally testing this hypothesis has proven difficult because all previous attempts to disrupt rotation have either led to cell death or massive cell shape changes, making it impossible to isolate the specific function of MreB rotation (5, 6). Furthermore, it remained difficult to explain the mechanistic link between cell wall growth and MreB rotation because of their separation in space by the cytoplasmic membrane. Here, we address both the coupling of MreB to cell wall synthesis and the function of MreB rotation. Results and DiscussionRodZ Rotates Similarly to MreB. We initially set out to identify proteins necessary for MreB rotation. In Escherichia coli, multiple proteins have been suggested to interact with MreB, including the penicillin binding protein (PBP) cell wall synthesis enzymes and RodZ, an integral membrane protein that directly binds MreB (8-11). PBP2 inhibitor...
The gram-negative bacterium Proteus mirabilis can exist in either of two cell types, a vegetative cell characterized as a short rod and a highly elongated and hyperflagellated swarmer cell. This differentiation is triggered by growth on solid surfaces and multiple inputs are sensed by the cell to initiate the differentiation process. These include the inhibition of flagellar rotation, the accumulation of extracellular putrescine and O-antigen interactions with a surface. A key event in the differentiation process is the upregulation of FlhD(2)C(2), which activates the flagellar regulon and additional genes required for differentiation. There are a number of genes that influence FlhD(2)C(2) expression and the function of these genes, if known, will be discussed in this review. Additional genes that have been shown to regulate gene expression during swarming will also be reviewed. Although P. mirabilis represents an excellent system to study microbial differentiation, it is largely understudied relative to other systems. Therefore, this review will also discuss some of the unanswered questions that are central to understanding this process in P. mirabilis.
The actin-like protein MreB has been proposed to coordinate the synthesis of the cell wall to determine cell shape in bacteria. MreB is preferentially localized to areas of the cell with specific curved geometries, avoiding the cell poles. It remains unclear whether MreB’s curvature preference is regulated by additional factors, and which specific features of MreB promote specific features of rod shape growth. Here, we show that the transmembrane protein RodZ modulates MreB curvature preference and polymer number in E. coli, properties which are regulated independently. An unbiased machine learning analysis shows that MreB polymer number, the total length of MreB polymers, and MreB curvature preference are key correlates of cylindrical uniformity, the variability in radius within a single cell. Changes in the values of these parameters are highly predictive of the resulting changes in cell shape (r2 = 0.93). Our data thus suggest RodZ promotes the assembly of geometrically-localized MreB polymers that lead to the growth of uniform cylinders.
Proteus mirabilis is a Gram-negative bacterium that undergoes a physical and biochemical change from a vegetative swimmer cell (a typical Gram-negative rod) to an elongated swarmer cell when grown on a solid surface. In this study, we report that a transposon insertion in the waaL gene, encoding O-antigen ligase, blocked swarming motility on solid surfaces but had little effect on swimming motility in soft agar. The waaL mutant was unable to differentiate into a swarmer cell. Differentiation was also prevented by a mutation in wzz, encoding a chain length determinant for O antigen, but not by a mutation in wzyE, encoding an enzyme that polymerizes enterobacterial common antigen, a surface polysaccharide different from the lipid A::core. In wild-type P. mirabilis, increased expression of the flhDC operon occurs after growth on solid surfaces and is required for the high-level expression of flagellin that is characteristic of swarmer cells. However, in both the waaL and the wzz mutants, the flhDC operon was not activated during growth on agar. A loss-of-function mutation in the rcsB response regulator or overexpression of flhDC restored swarming to the waaL mutant, despite the absence of O antigen. Therefore, although O antigen may serve a role in swarming by promoting wettability, the loss of O antigen blocks a regulatory pathway that links surface contact with the upregulation of flhDC expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.