Dysbiosis, defined as unhealthy shifts in bacterial community composition, can lower the colonization resistance of the gut to intrinsic pathogens. Here, we determined the effect of diet age and type on the health and bacterial community composition of the honeybee (Apis mellifera). We fed newly emerged bees fresh or aged diets, and then recorded host development and bacterial community composition from four distinct regions of the hosts' digestive tract. Feeding fresh pollen or fresh substitute, we found no difference in host mortality, diet consumption, development or microbial community composition. In contrast, bees fed aged diets suffered impaired development, increased mortality and developed a significantly dysbiotic microbiome. The consumption of aged diets resulted in a significant reduction in the core ileum bacterium Snodgrassella alvi and a corresponding increase in intrinsic pathogen Frischella perrara. Moreover, the relative abundance of S. alvi in the ileum was positively correlated with host survival and development. The inverse was true for both F. perrara and Parasacharibacter apium. Collectively, our findings suggest that the early establishment of S. alvi is associated with healthy nurse development and potentially excludes F. perrara and P. apium from the ileum. Although at low abundance, establishment of the common midgut pathogen Nosema spp. was significantly associated with ileum dysbiosis and associated host deficiencies. Moreover, dysbiosis in the ileum was reflected in the rectum, mouthparts and hypopharyngeal glands, suggesting a systemic host effect. Our findings demonstrate that typically occurring alterations in diet quality play a significant role in colony health and the establishment of a dysbiotic gut microbiome.
The strong association between Varroa destructor, deformed wing virus (DWV), and high overwintering colony losses (OCL) of honey bees is well established. Three DWV master variants (DWV-A, -B, and -C) have been described, and their role in colony mortality remains an open question. Therefore, the aim of this study is to investigate the seasonal prevalence, viral load, and changing distribution of the three DWV master variants within honey bee colonies from England, Wales, and 32 states across the United States. Here, we report that in 2016, DWV-B was prevalent (100%, n = 249) and dominant (95%) in England and Wales, compared to the US. (56%, n = 217 and 23%, respectively), where DWV-A was prevalent (83%, n = 217) and dominant (63%). DWV-C was regularly detected in low viral loads (<1 × 107 genome equivalents per bee) and at lower prevalence (58% in England and Wales, n = 203, and 14% across the United States, n = 124) compared to DWV-A and -B. DWV-B prevalence and dominance in England and Wales coincided with low OCL (6%). Meanwhile, a 60% loss was reported by participating U.S. beekeepers. In the United States, DWV-A prevalence (89%, n = 18) and viral load were significantly (p = 0.002) higher (1 × 10 8–1 × 1011) in colonies that died when compared to the surviving colonies (49% (n = 27), 1 × 106–1 × 1010). DWV-B had low prevalence (56%, n = 18) in the colonies that died with viral loads of <1 × 1010. However, DWV-B was routinely detected in high viral loads (>1 × 1010) in surviving colonies from all sample locations, providing further supporting evidence of DWV-A exhibiting increased virulence over DWV-B at the colony level.
One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known “core” honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.
Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial “pollen substitute” diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Results Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Conclusions Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.